slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
NTNU Department of Chemical Engineering PowerPoint Presentation
Download Presentation
NTNU Department of Chemical Engineering

Loading in 2 Seconds...

play fullscreen
1 / 15

NTNU Department of Chemical Engineering - PowerPoint PPT Presentation


  • 124 Views
  • Uploaded on

NTNU Department of Chemical Engineering. The CARPET program. Acronym for “CFD Applied to Reactor ProcEss Technology” A merged Strategic University (SUP)- and a Strategic Institute (SIP) Program Program duration : from 2001 through 2004 Total budget : 16.9 MNOK financed by NFR

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'NTNU Department of Chemical Engineering' - noelle


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide2

The CARPET program

  • Acronym for “CFD Applied to Reactor ProcEss Technology”
  • A merged Strategic University (SUP)- and a Strategic Institute (SIP) Program
  • Program duration : from 2001 through 2004
  • Total budget : 16.9 MNOK financed by NFR
  • 5 NTNU Doctorates (and 1 NTNU PostDoc) : - Experimental characterization of dispersed multiphase flows - Modeling of dispersed multi-fluid flow in chemical reactors - Modeling of Fluidized bed reactors - Application of Large Eddie Simulation (LES) in reactor modeling - Experiments on near-interface flow phenomena
  • 3 SINTEF research institutes (Materials Technology, Chemistry and Mathematics)
  • 2 NTNU departments (Chemical Engineering and Energy and Process Technology)
  • www.carpet.ntnu.no
slide3

NTNU Department of Chemical Engineering

Steering group:

Stein Tore Johansen, SINTEF Materialteknologi

Marc Dhainaut , SINTEF Materialteknologi

Harald Laux, SINTEF Materialteknologi

Paal Skjetne, SINTEF Kjemi

Trond Kvamsdal, SINTEF Matematikk

Tor Ytrehus, NTNU Energi og prosessteknikk

Hugo Jakobsen, NTNU Kjemisk prosessteknologi

Hallvard Svendsen, NTNU Kjemisk prosessteknologi

Secretary

Elisabeth Thorbjørnsen

c ontact team for the phd student s
Contact team for the PhD students

Håvard Lindborg:

-Hugo Jakobsen

-Harald Laux

-Stein Tore Johansen

-Magne Lysberg

-Leif Rune Hellevik

-Carl Birger Jensen

Thomas Braseth:

-Stein Tore Johansen

-Reidar Kristoffersen

-Knut Bech

-Ernst Meese

-Benjamin Ravary

-Trond Kvamsdal

-Rune Engeskaug

-Carl Birger Jensen

Elisabeth Thorbjørnsen:

-Hallvard F. Svendsen

-Svend Grådahl

-Pål Tetlie

-Kai Hjarbo

-Knut Bech

-Marc Dhainaut

Carlos Dorao:

-Hugo Jakobsen

-Stein Tore Johansen

-Paal Skjetne

-Marc Dhainaut

-Carl Birger Jensen

Maria Fernandino:

-Tor Ytrehus

-Knut Bech

-Hallvard Svendsen

-Svend Grådahl

-Pål Tetlie

-Kai Hjarbo

slide5

NTNU Department of Chemical Engineering

  • Objectives
  • The main goals of the program are to develop new physical models for fluid flow computations, particularly focused on models applicable to design and optimization of chemical and metallurgical processes, and to strengthen the academic education and research in these fields at NTNU and SINTEF by:
    • Graduating a minimum of 5 doctorates within these fields and strengthen the collaboration with international research groups through exchange on doctoral and post doc. level.
    • Developing model programs and experimental validation tools for a selection of specific applications.
    • Establish a graduate course in advanced reactor technology and multiphase flow.
    • Strengthen the links between the fundamental and applied research, and the Norwegian industry.
the carpet project dissemination of information
The CARPET Project – Dissemination of information
  • We aim at publishing a minimum of 25-30 papers and contributions in refereed journals and at national andinternational conferences.
  • We will arrange semi-annual seminars where the dr.ing fellows and researchers will present their work for invited industrial partners and other interested parties.
  • Close collaboration with the NFR- and industry supported programme HiPGaS will be maintained (see www.hipgas.ntnu.no).
the carpet project results
The CARPET Project – Results?

Improved Knowlege on:

  • Multiphase Flow Modeling (bubbles/particles - Stratified)
  • Population Balance Modeling (coalescence/breakup)
  • Turbulence Modeling (single- and multiphase Flow, LES)
  • Granular Flow Modeling
  • Numerical Schemes (Convection, Interface, Cut-Cells, LB)
  • Simulation and Validation of Stirred Tanks (Stirrer/Heat)
  • Experimental Techniques (Fluid Particles, Interface, bulk)
  • Discrete Element Method (DEM)
  • Project Administration!
the carpet project results1
The CARPET Project – Results?

Number of Journal Publications: 8

List of student contributions:

A Numerical Study of the Interactions Between Viscous Flow, Transport and Kinetics in Fixed Bed Reactors

Jakobsen, H. A., Lindborg, H. and Handeland, V.Computers & Chemical Engineering, 26 (3), 333-357, 2002.

Number of Conference Presentations: 9

List of student contributions:

Parallelization and Performance Optimization of a Dynamic CFD Reactor Model

Lindborg, H., Eide, V., Unger, S., Henriksen, S. T. and Jakobsen, H.A.

CHISA 2002, Prague, Czech Republic, August 25-29, 2002. Paper no. E6.3.

Numerical Analysis and Experimental Validation of Bubble Size Distributions in Two-Phase Bubble Column Reactors

Bertola, F., Grundseth, J., Hagesæther, L., Dorao, C., Luo, H., Hjarbo, K. W., Svendsen, H. F., Vanni, M., Baldi, G. and Jakobsen, H. A. 3rd European-Japanese Two-Phase Flow Group Meeting, Certosa di Pontignano, September 21-27th, 2003.

Reports: 6

Compendium on Multiphase Flow Modeling

the carpet project phd courses
The CARPET Project – PhD Courses

Chemical Engineering:

- Reactor Technology (1)

- Advanced Reactor Modeling (2)

- Industrial Colloid Chemistry (1)

  • Mechanical Engineering:
    • - Viscous Flow and Turbulence (1)
    • - Experimental Methods in Process Engineering (1)
    • - Multiphase Flow Modeling (3)
    • - Turbulence (1)
    • - Rheology and non-Newtonian Fluids (1)
    • - Computational Heat and Fluid Flow (4)
    • - Advanced Computational Fluid Dynamics (4)

Language and communication studies (Institutt for Språk og kommunikasjonsstudier)

- Scientific Writing and Oral Presentation (1)

  • Informatics, Matematics and Electronics (IME):
    • - Introduction to Supercomputing (3)
  • Self Study:
    • A study of bubbles, drops and particles (1)
    • Modeling of dispersed fluid particle transport and interaction phenomena (1)
    • Modeling of Turbulence in Multiphase Flow (1)
    • Granular Theory (1)
    • Introduction to measurement techniques (von Karman Institute) (2)
the hipgas project phd courses
The HiPGaS Project – PhD Courses
  • Physics:
    • - Classical Transport Theory (1)

Chemical Engineering:

- Reactor Technology (1)

- Advanced Reactor Modeling (1)

- Industrial Colloid Chemistry (1)

- Applied Thermodynamics (1)

- Fluid Phase Equilibria (1)

  • Mechanical Engineering:
    • - Viscous Flow and Turbulence (1)
    • - Multiphase Flow Modeling (1)
    • - Turbulent Flow (1)
    • - Computational Heat and Fluid Flow (2)
    • - Advanced Computational Fluid Dynamics (1)
  • Self Study:
    • A study of bubbles, drops and particles (2)
    • Modeling of dispersed fluid particle transport
    • and interaction phenomena (1)
    • A study of gas-droplet flow in separator units (1)
    • Selected Topics on Measuring Techniques (1)
    • Laboratory Course on Instrumentation and Control (1)
    • Safety and Hazop analyzes (1)
    • Information Search (2)
    • Research Dissemination (1)
    • Introduction to measurement techniques (von Karman Institute) (1)
    • Phase Equilibria in the Chemical, Biochemical and Petroleum Industries (DTU) (1)

Language and communication studies

- Scientific Writing and Oral Presentation (2)

  • Chemistry:
    • Statistical Thermodynamics and Computer Simulations (1)
    • Thermodynamics of Hydrocarbon Mixtures (1)
slide12

Common fields of interest

Bubble column

  • Investigations:
  • bubble coalescence
  • bubble breakup
  • population balance
  • flow pattern
  • Coherent structures
  • High pressure

Separation equipment

  • Investigations:
  • droplet coalescence
  • droplet breakup
  • droplet entrainment
  • droplet deposition
  • high pressure system
  • flow pattern
  • Thermodynamics
  • population balance
  • Global and meso- scale separation efficiency

Fluidized bed reactor

injection

(gas / droplets)

  • Investigations:
  • particle interaction
  • Reactions
  • Flow pattern
  • Heat Transport
  • Component Transport
  • High pressure
  • Coherent structures

injection

(gas)

Stirred Tank

  • Investigations:
  • bubble coalescence
  • bubble breakup
  • population balance
  • Flow pattern
  • Heat Transport
  • Techniques:
  • PIV / PTV
  • Probes
  • LDV
  • Techniques:
  • PIV / PTV
  • Probes
  • LDV

Experiments

Experiments

slide13

CARPET and HiPGaS Ph.D. students

CARPET

HiPGaS

Macro scale

Scrubber

Reactors

Thomas Braseth

Trond Austrheim

Håvard Lindborg

Cecilie Gotaas

Carlos Dorao

Alexandre Brigadeau

Elisabeth Torbjørnsen

Meso scale

Particle collision

Film draining

Coalescence

Breakup

Deposition

Entrainment

Maria Fernandino

Thomas Helsør

Kurt Schmidt

Micro scale

Marangoni effect

Colloid chemestry

Coalescence

the carpet project initial budget
The CARPET Project – Initial Budget

SINTEF 2100 2200 2200 2200 8700

NTNU 1600 2200 2200 2200 8200

Main activities2001 2002 2003 2004 Total

5 Dr.ing 600 1910 1910 1580 6000

SINTEF: M.T 775 650 650 800 2875

SINTEF: A.C 725 600 600 750 2675

SINTEF: A.M 300 300 300 300 1200

Post Doc. 240 240 240 240 960

Progr. Mangm. 300 250 250 300 1100

Conf. & travel 250 250 250 300 1050

Equipment 300 200 200 130 830

Contingencies 210 210

Total 3700 4400 4400 4400 16900