1 / 12

Τεχνολογία Προηγμένων Ψηφιακών Κυκλωμάτων & Συστημάτων Καθηγητής: Παπαδόπουλος Γ.

Τεχνολογία Προηγμένων Ψηφιακών Κυκλωμάτων & Συστημάτων Καθηγητής: Παπαδόπουλος Γ. Πιτσιώρης Γεώργιος 4830 Ε’ Έτος. Digital Integrated Circuits Jan Rabaey. Chapter 4: Problem 4.1. Δεδομένα για Polysilicon. Parallel-plate capacitance to substrate: 0.088 fF/ μ m 2

ninabowman
Download Presentation

Τεχνολογία Προηγμένων Ψηφιακών Κυκλωμάτων & Συστημάτων Καθηγητής: Παπαδόπουλος Γ.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Τεχνολογία Προηγμένων Ψηφιακών Κυκλωμάτων & ΣυστημάτωνΚαθηγητής: Παπαδόπουλος Γ. Πιτσιώρης Γεώργιος 4830 Ε’ Έτος

  2. Digital Integrated CircuitsJan Rabaey

  3. Chapter 4: Problem 4.1

  4. Δεδομέναγια Polysilicon • Parallel-plate capacitance to substrate: 0.088 fF/μm2 • Fringing capacitance to substrate : 0.054fF/μm • Sheet resistance : 4 Ω/sq

  5. Ιav= Ctotal* ΔV/ΔT= =(4*100fF+7*Cws)*5Volts/5nsec= =400fF+7*(5mm*3μm*0.088fF/μm2 +2*5mm*0.054fF/μm)Volts/nsec= =400fF+7*(1320fF+540fF)Volts/nsec= =13.42mA Iav,90%=0.9*13.42mA=12.078mA

  6. Π-Network model για RC distributed Line

  7. Έτσι διαμορφώνεται το ισοδύναμο κύκλωμα

  8. Capacitors : Cws=5mm*3μm*0.088fF/μm2+2*5mm* 0.054fF/μm=(1320+540)fF=1860fF • Resistors : Rws=5mm/3μm*4Ω/sq=6.67kΩ

  9. Το dominant time constant είναι το elmore delay (first order time constant) • Penfield-Rubenstein-Horowitz δίνουν μεθοδολογία για tree RC networks • τ=1.5* Cws*(Rws+Rws+2*Rws)+(0.5*Cws+100fF)* (Rws+Rws+2*Rws+3*Rws)=9.5*Cws*Rws+7*Rws*100fF= 9.5*1860fF*6.67kΩ+7*100fF*6.67kΩ=122.528nsec

  10. Λύση με άλλα δεδομένα • Parallel-plate capacitance to substrate: 0.058 fF/μm2 • Fringing capacitance to substrate : 0.043fF/μm • Sheet resistance : 4 Ω/sq

  11. Αποτελέσματα • Ιav= Ctotal* ΔV/ΔT= =(4*100fF+7*Cws)*5Volts/5nsec= =400fF+7*(5mm*3μm*0.058fF/μm2 +2*5mm*0.043fF/μm)Volts/nsec= =400fF+7*(870fF+430fF)Volts/nsec= =9.5mA • Iav,90%=0.9*9.5mA=8.55mA

  12. Αποτελέσματα • Capacitors : Cws=(870+430)fF=1300fF • Resistors : Rws=5mm/3μm*4Ω/sq=6.67kΩ • τ=1.5* Cws*(Rws+Rws+2*Rws)+(0.5*Cws+100fF)* (Rws+Rws+2*Rws+3*Rws)=9.5*Cws*Rws+7*Rws*100fF= 9.5*1300fF*6.67kΩ+7*100fF*6.67kΩ=87nsec

More Related