430 likes | 551 Views
M athematical M odeling. Team B 김도현 서수빈 이혜경. Estimate the Solution with Euler s Method. ‘ ’. Context. Preliminary Problem Summary Further. Exact solution MATLAB Code Result. Preliminary. ODE solving method. - seperable -integrate factor. Preliminary. Euler s Method. ‘ ’.
E N D
MathematicalModeling Team B 김도현 서수빈 이혜경
Context Preliminary Problem Summary Further • Exact solution • MATLAB Code • Result
Preliminary. ODE solving method -seperable -integrate factor
Preliminary. Eulers Method ‘’
Euler s Method • ‘’
Problem 1. Use Euler s method with step size h = 0.1 to approximate the solution to the IVP ‘’ at the points x = 1.1, 1.2, 1.3, 1.4 and 1.5. Compare your numerical result with the exact solution.
Problem 1. Coding i=1; x(1,1)=1; y(1,1)=4; slope(1,1)=x(1,1).*(y(1,1).^(1/2)); whilei<=5 i=i+1; x(1,i)=x(1,i-1)+0.1; y(1,i)=slope(1,i-1).*0.1+y(1,i-1); slope(1,i)=x(1,i).*(y(1,i).^(1/2)); end z=((x.^2+7).^2)/16; plot(x,y,'r'); hold on plot(x,z,'b'); error=abs(y-z)
Problem 1. Result Exact solution Estimated solution
Problem 2. Use Euler s method to find approximates to the solution of the IVP ‘’ at x = 1, taking 1, 2, 4, 8, and 16 steps. Compare your numerical result with the exact solution.
Problem 2. Coding i=1; y(1,1)=1; n=input('How many steps ?'); x=0:1/n:1; whilei<=n y(1,i+1)=y(1,i)/n+y(1,i); i=i+1; end s=0:1/1000:1; z=exp(s); plot(x,y,'r'); hold on plot(s,z,'b'); hold off
Problem 2. Result n=1 Exact solution Estimated solution Error = 0.7183
Problem 2. Result n=2 Exact solution Estimated solution Error = 0.4684
Problem 2. Result n=4 Exact solution Estimated solution Error = 0.2769
Problem 2. Result n=8 Exact solution Estimated solution Error = 0.1525
Problem 2. Result n=16 Exact solution Estimated solution Error = 0.0804
Problem 2. Result n=1024 Exact solution Estimated solution Error = 0.0013
Problem 2. Result n=1 n=2 n=4 n=8 n=16
Problem 3. ‘’ Use Euler s method with step size h = 0.1 to approximate to the solution of the IVP with x0 = 0, and compute the first 10 iterations of this scheme, and compare the result with the exact solution.
Problem 3. Coding i=1; y(1,1)=1; x=0:0.1:1; whilei<=10 y(1,i+1)=(y(1,i)+sin(x(1,i))).*0.1+y(1,i); i=i+1; end s=0:1/1000:1; z=3*exp(s)/2-sin(s)/2-cos(s)/2; plot(x,y,'r'); hold on plot(s,z,'b'); error=abs(3*exp(x)/2-sin(x)/2-cos(x)/2-y)
Problem 3. Result Exact solution Estimated solution Error = 0.2371
Summary - error 1) Same mesh size, different x value 2) Same x value, different mesh size 3) error=0.2371 with mesh h=0.1 at x=1
Summary - compare whenΔx=1 1) mesh=0.1 (10 iteration) error=0.1983 2) mesh=0.125 (8 steps) error=0.1525 3) mesh h=0.1 error=0.2371
Further... Taylor Series Method Improved Euler s Method Runge-Kutta Method ‘’ Chebyshev Node Choosing