Konzepte zur Verbindung unterschiedlicher disziplinärer Ansätze in der Klimawirkungsforschung - PowerPoint PPT Presentation

ngrant
center for environmental systems research n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Konzepte zur Verbindung unterschiedlicher disziplinärer Ansätze in der Klimawirkungsforschung PowerPoint Presentation
Download Presentation
Konzepte zur Verbindung unterschiedlicher disziplinärer Ansätze in der Klimawirkungsforschung

Loading in 2 Seconds...

play fullscreen
1 / 17
Download Presentation
Konzepte zur Verbindung unterschiedlicher disziplinärer Ansätze in der Klimawirkungsforschung
1 Views
Download Presentation

Konzepte zur Verbindung unterschiedlicher disziplinärer Ansätze in der Klimawirkungsforschung

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Center for Environmental Systems Research, University of Kassel (Project Coordination) Prof. Dr. Joseph Alcamo Dr. Dörthe Krömker Frank Eierdanz Adelphi Research, Berlin Alexander Carius Dennis Tänzler Potsdam Institute for Climate Impact Research Dr. Richard KleinDr. Lilibeth Acosta-Michlik Konzepte zur Verbindung unterschiedlicher disziplinärer Ansätze in der Klimawirkungsforschung

  2. Crises event Environmental Stress High probabilityof crises Low probability of crises No crisesevent Susceptibility Gemeinsames Rahmenmodell

  3. Ziele des Projektes • better understanding of extreme climate events and risks to society … • … improving the definitions of the three central concepts • crisis • environmental stress • susceptibility • Focus: Climate-related water shortages.

  4. Fallstudiengebiete Volgograd + Saratov Russia Algarve + Alentejo Portugal Andhra Pradesh India

  5. Anfälligkeit: …Schwerpunkt heute Krise: Medienanalyse Wasserstress: kombinierter neuer Index

  6. Methode zur Abschätzung von Anfälligkeit • Developing inference models from 3 perspectives definition of concepts, selection of indicators • 2. Collecting data top-down and bottom-up from case study regions: • Southern Portugal, Volga region, Andhra Pradesh • 3. Quantifying the models with fuzzy set theory • 4. Computing susceptibility from 3 perspectives … • environmental psychology, political science, economics

  7. Economics Konzeptioneller Überblick Exposure Disaster/Crises Susceptibility Environmental psychology Agents’ Perception of Threat Agents’ Protection Capacity Agents’ Perception of Competence Political science Political Capacity & Political Willingness PolSus Environ-mental stress Degreeof being susceptible Wealth & Economic Sensitivity EcoSus SocCuSus Socio-cultural Integration Monetary Resources Agriculture Sector Economic Sus Infra-structure System Health Status Social Sus Educational Attainment Gender Equality

  8. Agrarian income External debt Number of doctors Perceived Probability Tax Conflict Expen - Degree of GDP per Employees in Hydro - Size of Depen-dency from agriculture Not agrarian income Life expec-tancy GDP per capita Monetary resources Health status revenue ditures for Corruption power involvement capita agriculture Agriculture Agrarian resources health production Degree of Immuni Self-Efficacy zations Resources Partici if pation Depen-dency ratio Tax revenue Infant mortality Agrarian food source Not agrarian resources Relative Relati ve Lack of Economic state State Wealth Sensitivity capacity willingness Agriculture (% of GDP) Illiteracy Not agrarian food source Appraisal of threat Appraisal of competence Technical measures Agricul-ture sector Economic suscep-tibility Social suscep-tibility Educa-tional attainment Socio - cultural Employees in agriculture Expen-ditures for education Political Susceptibility Economic Neg. conse-quences Susceptibility (as lack of Social Susceptibility “At place” measures Perceived Severity Integration) Conse-quences of drought Hydro-power production % female in labour force Pos. conse-quences Suscep-tibility Gender equality Infra-structure system Response-Efficacy Barriers Female literacy Irrigated areas Susceptibility Susceptibility Threatened values measured input variable dimension, computedvia Fuzzy subsystem

  9. Susceptibility Susceptibility Susceptibility India 2001 Portugal 2001 Russia 2001 0,7 0,4 0,3 Low capacity Low capacity Low capacity high low low for technical for technical for technical measures measures measures 1,00 Low capacity 1,00 Low capacity 1,00 Low capacity Dependency Dependency Dependency for at place 0,75 for at place 0,75 for at place 0,75 f. agriculture f. agriculture f. agriculture measures measures 0,50 0,50 measures 0,50 0,25 0,25 Barriers to Barriers to Barriers to 0,25 Dependency Dependency Dependency implement implement 0,00 implement 0,00 0,00 ratio ratio ratio measures measures measures Appraisal of Appraisal of Appraisal of Low Low Low threatened threatened threatened resources resources resources values values values Negative Negative Negative consequences consequences consequences of drought of drought of drought Susceptibility Susceptibility Susceptibility India 1991-1995 0,6 0,3 0,4 crucial low low Financial indicators 1,00 0,75 Gender Agriculture 0,50 indicators indicators 0,25 0,00 Education Infrastructure indicators indicators Health indicators Susceptibility Susceptibility Susceptibility Portugal 1991-1995 India 1991-1995 Russia 1991-1995 0,8 0,3 0,8 Lack of very high Lack of low very high Lack of Statecap Statecap Statecap 1,00 1,00 1,00 0,75 0,75 0,75 Lack of Lack of 0,50 Lack of 0,50 0,50 Lack of Lack of Lack of Social Social Social Statewill 0,25 0,25 Statewill 0,25 Statewill Integration Integration Integration 0,00 0,00 0,00 Economic Lack of Economic Lack of Economic Lack of Sensitivity Wealth Sensitivity Wealth Sensitivity Wealth Ergebnisse für Anfälligkeit Andhra Pradesh, India Algarve + Alentejo, Portugal Volgograd + Saratov, Russia Psychology Russia 1991-1995 Portugal 1991-1995 Financial Financial indicators indicators 1,00 1,00 0,75 0,75 Gender Agriculture Gender Agriculture 0,50 0,50 indicators indicators indicators indicators 0,25 0,25 0,00 0,00 Economics Education Infrastructure Education Infrastructure indicators indicators indicators indicators Health Health indicators indicators Political Science

  10. Ergebnisse Comparison of Disciplines 1,0 0,8 0,6 Susceptibility [Fuzzy Index] 0,4 0,2 0,0 Andhra Pradesh, India Algarve + Alentejo, Portugal Volgograd + Saratov, Russia Economics perspective Political perspective Psychological perspective

  11. Fazit • Refinement of the concepts of susceptibility, environmental stress, crisis • Integrated Assessment – Coupling between approaches from the social and natural sciences • Development of methodology to assess susceptibility • Comprehensive and comparative approach to susceptibility • First steps towards integrated approach to study the internal side of vulnerability • Quantification of susceptibility • Consideration of qualitative information • However, more effort needed to validate findings • Consider participative involvement of relevant stakeholder

  12. Rapid Assessment of Vulnerability:Ein Ansatz zur integrierten Bewertung von Vulnerabilität durch Klimaveränderungen Ausblick und Anwendung

  13. Projektziele • Auswirkungen des Klimawandels auf Dürren und Wasserressourcen • Methode zur Abschätzung der Vulnerabilität der Auswirkungen des Klimawandels • Methode des “Rapid Assessment” Zweijähriger Projektzyklus • Regionaler Ansatz (Region, Flussgebiet) • “Screening Tool” Vergleich der Vulnerabilität unterschiedlicher Regionen und Identifizierung von “hot spots”

  14. Anwendungsbereiche (Auswahl) • Forum for Early Warning and Early Response (FEWER)Globales Netzwerk, Krisenidentifizierung, Analyse von Konfliktursachen • Environment and Security Transforming Risks into Cooperation (ENVSEC)Analyse von Krisenursachen, Umweltkooperation als Instrument der Krisenprävention • Early Analysis of Tensions and Fact-Finding (FAST)Politisches Frühwarnsystem, Entscheidungshilfe für Entscheidungsträger, quantitativ-qualitative Methoden

  15. Bewertung von Umweltrisiken in Zentralasien

  16. Fallstudien • Bisherige Fallstudien Süd-Portugal, südliches Wolgabecken, Andhra Pradesh • Zusätzliche Fallstudien • Westliches Tajikistan • Kooperationspartner (UNEP DEWA, UNDP, OSZE) • Sulawesi • Verbindung mit IMPENSO und DFG SFB STORMA (Teilprojekt 5D) • Vorteile • Datenverfügbarkeit, regionale Partner, Nachfrage zur Entscheidungsvorbereitung