1 / 44

Pion capture system for PRISM

Pion capture system for PRISM. M. Yoshida Osaka Univ. 2006/11/13 PRISM workshop @ Osaka Univ. PRISM/PRIME project. Phase Rotated Intense Slow Muon source Collect 68MeV/c m -. proton beam. PRIME detector. pion production, capture and transport system. Phase rotator.

nevaeh
Download Presentation

Pion capture system for PRISM

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Pion capture system for PRISM M. Yoshida Osaka Univ. 2006/11/13 PRISM workshop @ Osaka Univ.

  2. PRISM/PRIME project • Phase Rotated Intense Slow Muon source • Collect 68MeV/c m- proton beam PRIME detector pion production, capture and transport system Phase rotator

  3. Capture/Transport solenoid channel • Transport pions and muons in 2T solenoid • Bent towards experimental area • Put radiation shield along proton beam line • Reduce background by wiping out higher energy particles

  4. Target • Resistance against Heat/Shock • Liquid target: high resistance, but need much R&D • Solid target: easy operation, but need to select robust material and need careful design for heat removal • Pion yield • High Z : high pion multiplicity • Low Z : less absorption of low-energy pions • Proton beam • Narrow spot : high collection efficiency • Wide spot : easier to reduce heat shock • To collect low-energy pions in PRISM • Default option: Solid LowZ (Graphite) target with wide-spot proton beam • Alt. option: Solid HighZ (Tungsten) target with narrow-spot proton beam • Need to study availability

  5. Muon yield as a function of target tilt angle • MARS14+ICOOL • Tungsten target • 6T capture solenoid 1T transport • Number of muons 10m downstream target • Momentum selection : 68MeV/c+-20% • 20% larger yield at 0.2 rad (~10 deg)

  6. 5cm 15cm Simulation setup for heat load study • MARS15(04) • Primary beam • 40GeV • size s=1.0cm • 1014 protons/sec  100W = 6.24MeV/primary p • Magnetic field • uniform 6Tesla • Solenoid inner bore R=15cm • Target • Graphite (1.7g/cm3) • radius=2cm, length=80cm (2x interaction length) • Shield • Tungsten • length 140cm • thickness 25cm – 35cm • Coil • 90%SC (40%NbTi + 60%Cu) + 10%Kapton • density 7.00 g/cm3 • length 140cm • thickness 5cm – 20cm protons

  7. Particle flux Charged hadron flux Neutron flux R (cm) z (cm)

  8. Deposit energy distribution • Al-stabilized SC coil • Density 3.1g/cm3 • Deposit E: 0.5W/kg •  5 MGy/year • Tungsten radiation shield • 20cm thick, 140cm long • Inner bore: 30cm • Outer diameter : 70cm • Density : 19.3g/cm3 • 8.5 ton • Deposit E : 70 kW

  9. Heat Load on Coil (target tilt: 10deg) 360W Al安定化超伝導コイル 620W Cu安定化超伝導コイル タングステンシールド:110kW

  10. Concepts of pion capture/transport system for PRISM • Capture low-energy pions produced in Graphite target with 6T solenoid field • Low-Z material • to avoid absorption in the target • Collect backward pions from the target • Direction of emitted low energy pions is almost isotropic • helps to reduce radiation heating on cold mass (avoid high energy hadrons) • Tilt target by 10 deg. to implement proton beam pipe • Energy deposit on superconducting coil of capture solenoid < 100W • Al-stabilized SC coil to reduce cold mass • Injected proton beam is assumed to have 1cm-sigma spot on Target • Collect backward pions • The first trial of conceptual design has been done.

  11. Current Distribution6T2T in 6 steps • 2800kA / (1400mm long x 120mm thick) • 17 A/mm2 • 520kA/(1000mm x 15mm thick) • 35 A/mm2 • 4x104kA / (4x200mm long x 15 mm thick) • 35 A/mm2 • 320kA / (300mm long x 15 mm thick) • 71 A/mm2 • 200kA / (500mm long x 15 mm thick) • 27 A/mm2 • 240kA / (500mm long x 15 mm thick) • 32 A/mm2 • 520kA / (1000mm long x 15mm thick) • 35 A/mm2 17 A/mm2 71 A/mm2 35 A/mm2 35 A/mm2 35 A/mm2 33 A/mm2 27 A/mm2

  12. Current Distribution6T2T in 2 steps • 2750kA / (1400mm long x 120mm thick) • 16 A/mm2 • 680kA / (1000mm long x 15 mm thick) • 45 A/mm2 • 100kA / (450mm long x 15 mm thick) • 15 A/mm2 • 620kA / (650mm long x 15 mm thick) • 64 A/mm2 • 200kA / (500mm long x 15 mm thick) • 27 A/mm2 • 520kA / (1000mm long x 15mm thick) • 35 A/mm2 64 A/mm2 16 A/mm2 15 A/mm2 45 A/mm2 35 A/mm2 27 A/mm2

  13. Geometry of Pion Capture System 100 300 600 1200 1400 1000 600 300 1340 To transport solenoid  1220 300 600 700 1000 520A/mm 383A/mm 1964A/mm 520A/mm 1133A/mm 100 magnetic field [Tesla]

  14. Heat load estimationMARS Simulation 140cm • MARS15(04) • Primary beam • 40GeV • size s=1.0cm • 1014 protons/sec • Target • Graphite (1.7g/cm3) • radius=2cm • Magnetic field • uniform 6Tesla • Solenoid inner R=15cm • Coil • Al-stabilized superconducting Coil • 71%Al + 11%NbTi + 14%Cu + 4%G10-tape • density 3.1 g/cm3 5cm Tungsten shield 15cm protons

  15. Heat load on coil Coil: 89 W Shield: 41 kW 80cm-long graphite target • Choose • thickness of shield = 30cm • thickness of coil = 12cm  17 A/mm2 • target length = 60cm

  16. 270 0 180 90 Spatial distribution of deposit energy

  17. Radius distribution at 3m 6T2T 6T1T • Larger radius distribution than 30cm in the case 6T1T • Smaller transport solenoid can be adopted in 6T2T 10cm 15cm 20cm 25cm

  18. High field capture z=160cm s=8.1cm Large area of 6T field can affect on pion emittance? y (cm) z=230cm s=8.1cm Target y (cm) z=300cm s=8.8cm

  19. Field peak positionLarger shield bore (30cm50cm) Target • Pions are collimated at the radiation shield  need larger bore • The magnetic mirror can increase pion yields by 30%, but downstream part of capture solenoid has much larger energy deposit bore50cm bore30cm

  20. Yields (R<30cm@z=300cm) and Heat Load as a function of shield inner bore • Shield inner bore should be larger than 40cm (Shield thickness = 25cm) • Heat Load for 40cm bore = 108W 2006/10/18 M. Yoshida, PRISM Solenoid

  21. Momentum, Radial distribution @20m downstream target Pmu<80MeV/c Nmu=0.069 /POT Pmu<80MeV/c : 23% Nmu=0.043 /POT Pmu<80MeV/c : 30% Pm (GeV/c) R2 (cm2)

  22. Edep: 77W • Yield: 0.070/POT • Edep: 76W • Yield: 0.088/POT • Edep: 96W • Yield: 0.106/POT • Edep: 106W • Yield: 0.091/POT • Edep: 97W • Yield: 0.104 /POT 2006/10/18 M. Yoshida, PRISM Solenoid

  23. Geometry of capture solenoid system 100 300 600 1200 1400 1000 600 1340 To transport solenoid  1220 600 700 700 300 500 1000 200 520A/mm 383A/mm 1964A/mm 520A/mm 1133A/mm magnetic field [Tesla]

  24. Parameters • Proton beam • 30 GeV, 15 microA • Parallel beam, 1-cm spot (gaussian sigma) at the target • Production target • Graphite, Length: 60 cm, Diameter: 4 cm • Al-stabilized Superconducting coil • Radiation shield • Tungsten, Inner bore = 30 cm diameter • Heat Load on 6T coil = 64W • Muon yield after 2-Tesla straight transport solenoid • 0.069 m /POT, R<30cm@20m • 6.5x1012 muons / sec • Muon yield after momentum selection, Pmu<80MeV/c • 0.016 m /POT, R<30cm@20m • 1.5x1012 muons / sec • Need to estimate realistic stopping efficiency

  25. Shield in Matching section R • Muon yield decreases by 7% when shield in matching section increases from 1cm to 10cm • Shield of 5cm thick is enough? • Need to study energy deposit in coils of the section 2006/10/18 M. Yoshida, PRISM Solenoid

  26. MECO Production Solenoid 2.5T 5T 50 cm 140 cm 554 cm 63W in Coil 16kW in Shield

  27. PRISM Solenoid for low-power proton beam (8GeV-1) 100 900 550 1150 550 1000 600 To transport solenoid  600 1100 600 1300 700 300 900 800 200 520 A/mm 390 A/mm 2167 A/mm 650 A/mm 910 A/mm magnetic field [Tesla]

  28. Parameters (8GeV-1) • Proton beam • 8 GeV, 15 microA • Parallel beam, 1-cm spot (gaussian sigma) at the target • Production target • Graphite, Length: 60 cm, Diameter: 4 cm • Al-stabilized Superconducting coil • Radiation shield • Tungsten, Inner bore = 30 cm diameter • Heat Load on 6T coil = 72 W • Muon yield after 2-Tesla straight transport solenoid • 0.033 m /POT, R<30cm@20m • 3.1x1012 muons / sec • Muon yield after momentum selection, Pmu<80MeV/c • 0.0082 m /POT, R<30cm@20m • 0.77x1012 muons / sec • Need to estimate realistic stopping efficiency Pm (GeV/c) R2 (cm2)

  29. Summary • Conceptual design of pion capture solenoid and transport bent solenoid has been performed for PRISM • Heat load on coils of capture solenoid can be less than 100W as 40 GeV / 30 GeV proton beam injected, assuming 0.6MW beam power. • Design works for the solenoid magnets are being started in collaboration with KEK • To improve pion yield • Reduce beam spot size on target • Field gradient around the target • acceptance would increase by mirroring forward pions • To fit to FFAG acceptance (H: 40p mm-rad, V:6.5p mm-rad) • optimize field profile in the capture system to reduce muon emittance. (keep higher field?)

  30. Vertical extraction Y Z

  31. Prompt Dose and Energy Deposition around PRISM target 105 mSv/hr at 1012 incident protons / sec

  32. PRISM Solenoid for low-power proton beam (8GeV-2) 100 900 550 1150 550 1000 600 To transport solenoid  1100 600 1300 700 700 300 500 900 200 520 A/mm 390 A/mm 2056 A/mm 650 A/mm 910 A/mm magnetic field [Tesla]

  33. Parameters (8GeV-2) • Proton beam • 8 GeV, 15 microA • Parallel beam, 1-cm spot (gaussian sigma) at the target • Production target • Graphite, Length: 60 cm, Diameter: 4 cm • Al-stabilized Superconducting coil • Radiation shield • Tungsten, Inner bore = 30 cm diameter • Heat Load on 6T coil = 137 W • Muon yield after 2-Tesla straight transport solenoid • 0.026 m /POT, R<30cm@20m • 2.4x1012 muons / sec • Muon yield after momentum selection, Pmu<80MeV/c • 0.0066 m /POT, R<30cm@20m • 0.62x1012 muons / sec • Need to estimate realistic stopping efficiency Pm (GeV/c) R2 (cm2)

  34. PRISM Solenoid for low-power proton beam (8GeV-3) 100 1400 550 850 700 1000 600 To transport solenoid  1100 600 1300 700 660 300 500 800 200 520 A/mm 390 A/mm 1857 A/mm 572 A/mm 910 A/mm magnetic field [Tesla]

  35. Parameters (8GeV-3) • Proton beam • 8 GeV, 15 microA • Parallel beam, 1-cm spot (gaussian sigma) at the target • Production target • Graphite, Length: 60 cm, Diameter: 4 cm • Al-stabilized Superconducting coil • Radiation shield • Tungsten, Inner bore = 30 cm diameter • Heat Load on 6T coil = 107 W • Muon yield after 2-Tesla straight transport solenoid • 0.022 m /POT, R<30cm@20m • 2.1x1012 muons / sec • Muon yield after momentum selection, Pmu<80MeV/c • 0.0060 m /POT, R<30cm@20m • 0.56x1012 muons / sec • Need to estimate realistic stopping efficiency Pm (GeV/c) R2 (cm2)

  36. arc radius : 4000 mm bend angle : 90 deg. Bs : 2 T By : 0.05 T coil inner raduis : 350 mm (inner wall : 50mm) coil thickness : 50.0 mm coil length : 629.0 mm current : 36.5 A/mm^2 step angle : 10 deg. 4 meters 10 deg. Parameters of transport solenoid A. Sato

  37. Summary • Conceptual design of pion capture solenoid and transport bent solenoid has been performed for PRISM • Heat load on coils of capture solenoid can be less than 100W as 40 GeV proton beam injected, assuming 0.6MW beam power. • Design works for the solenoid magnets are being started in collaboration with KEK • To improve pion yield • Reduce beam spot size on target • Field gradient around the target • acceptance would increase by mirroring forward pions • To fit to FFAG acceptance (H: 40p mm-rad, V:6.5p mm-rad) • optimize field profile in the capture system to reduce muon emittance. (keep higher field?)

  38. Horizontal position/direction distribution at exit of transport solenoid bend in 3 steps Smooth curve

  39. Capture Matching Bent Post Injection Point:s=7m

  40. muon momentum @15m (GeV) parent pion momentum @3m (GeV) Muon high energy tail • High momentum muons above 75MeV/c could generate background electron by DecayInFlight • No need to keep pions > 160MeV 2006/10/18 M. Yoshida, PRISM Solenoid

More Related