Bypassing the unique games conjecture for two geometric problems
1 / 22

Bypassing the Unique Games Conjecture for two geometric problems - PowerPoint PPT Presentation

  • Uploaded on

Bypassing the Unique Games Conjecture for two geometric problems. Yi Wu IBM Almaden Research. Based on joint work with Venkatesan Guruswami Prasad Raghavendra Rishi Saket CMU Georgia Tech IBM . Unique Games Conjecture. Unique Games Conjecture [ Khot 02]

I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
Download Presentation

PowerPoint Slideshow about 'Bypassing the Unique Games Conjecture for two geometric problems' - neola

An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Bypassing the unique games conjecture for two geometric problems

Bypassing the Unique Games Conjecture for two geometric problems

Yi Wu

IBM Almaden Research

Based on joint work with

VenkatesanGuruswami Prasad Raghavendra Rishi Saket

CMUGeorgia Tech IBM

Unique games conjecture
Unique Games Conjecture

  • Unique Games Conjecture [Khot 02]

  • For every there is an integer such that it is NP-hard to decide whether a UG instance on labels has:

    • (YES instance)

    • (NO instance)

Bypassing the unique games conjecture for two geometric problems

Implications of UGC

For a large class of optimization problems, Semidefinite Programming (SDP) gives the best polynomial time approximation.




Max Cut




Max 3 SAT

Multiway Cut


Max 4 SAT

Max 2 SAT

Status of the ugc
Status of the UGC

  • Lower bound: strong SDP integrality gap instance exists. [KV05, KS09,RS09, BGHMRS]

  • Upper bound: [Arora-Barak-Steurer 11] can be solved in time .

    • The reduction from SAT (of size to prove UGC needs to have size blowup if SAT does not have sub-exponential algorithm.

Skepticism of ugc
Skepticism of UGC

  • What if UGC is false? The optimality of SDP may not hold.

    • very few result on the optimality of SDP without UGC.

  • It is not clear whether Unique Games Conjecture is a necessary assumption for all the hardness results.

Overview of our work
Overview of our work

  • For two natural geometric problems, we prove that Semidefinite Programming gives the best polynomial time approximation withoutassuming UGC.

    • same UG-hardness results known previously.

Problem 1 subspace approximation
Problem 1: Subspace approximation

  • Input: a set of points , a number Some constant

  • Algorithmic task: finding the best dimensional subspace minimize the norm of its Euclidean distance to the points.

is the Euclidean distance between and

Special case
Special case

  • Objective function:

  • least square regression.

  • : Minimum enclosing ball.

    In this work, we study the problem for

Our results
Our results


Let be the -th norm of a Gaussian

  • Previous result: [Deshpande-Tulsiani-Vishnoi11] :

    • UG hardnessof approximation

    • approximation by SDP.

  • Our result: NP hardness of approximation.

Problem 2 quadratic maximization
Problem 2: Quadratic Maximization

  • Input: a symmetric matrix

  • Algorithmic goal:

    Subject to for

Special case1
Special case

  • : calculating the largest eigenvalue.

  • : the Grothendieck problem on complete graph.

    In this work, we study the problem for

Previous result
Previous Result:

[Kindler-Naor-Schechtman 06] :

  • UG hardness

  • approximation by SDP.

Our result
Our Result

  • NP-hardnessof approximation.

  • approximation by SDP.

    • independently by [Naor-Schechtman]

Remarks on our results
Remarks on our results

  • While both problems have nothing to do with Gaussian, involves Gaussian Distribution in a fundamental way.

    • Gaussian Distribution also occurs fundamentally in UG hard ness proof, coincidence?

  • Evidence that SDP can be the best algorithm for optimization problems without UGC.

    • the approximation threshold is : unlikely to have a simple alternative combinatorial algorithm?

  • Our hardness reduction have size blow up matching the Arora-Barak-Steurer algorithm’s requirement.

Proof overview for subspace approximation
Proof overview forsubspace approximation

Main gadget dictator test
Main Gadget: Dictator Test

  • A instance of subspace approximation over and .

    Equivalent problem: finding

| is the distance from to subspace orthogonal to

A dictator test instance
A Dictator Test instance

  • Completeness: for every depends only on 1 coordinate (, is less than

  • Soundness: for every that depends only on a lot of coordinates, is above

If we have a dictator test instance, then it is UG-hard get better than-approximation.

A dictator test instance1
A -Dictator Test instance

  • Let be all the points on

    • (Completeness) When ,

    • (Soundness, informal proof) When

by CLT

Reduction from smooth label cover
Reduction from Smooth Label Cover

Label sets

For edge ,

satisfies if,

Smooth label cover
Smooth Label Cover

Theorem [Khot 02] : (soundness), s.t. given an instance with label sets it is NP-hard to decide,

OPT() (YES) or OPT() (NO)

where satisfies the following property,

(smoothness) the set of projections is a good hash family.

Rest of the proof
Rest of the proof

  • Composing the Smooth Label Cover with the dictator test.

Future work
Future Work

  • Other geometric problem with only UG hardness are known.

    • Kernel Clustering

    • Learning halfspacesby degree polynomials

    • Matrix Norm (SSE hardness).