the nervous system pgs 184 196 n.
Skip this Video
Loading SlideShow in 5 Seconds..
The Nervous System (Pgs. 184-196) PowerPoint Presentation
Download Presentation
The Nervous System (Pgs. 184-196)

The Nervous System (Pgs. 184-196)

135 Views Download Presentation
Download Presentation

The Nervous System (Pgs. 184-196)

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. The Nervous System(Pgs. 184-196)

  2. The Nervous System • Organs of the nervous system are divided into • Central Nervous System (CNS) • Peripheral Nervous System (PNS)

  3. Functions of the Nervous System • Sensory • Integrative • Motor

  4. Functions of the Nervous System • Sensory functions detect changes • Sensory receptors at the end of peripheral nerves detect changes inside/outside of the body • External – light, sound touch Internal – pH levels, oxygen/carbon dioxide concentrations • Information gathered is converted to nerve impulses of the PNS which sends the information to the CNS

  5. Functions of the Nervous System • Integrative functions bring sensory information together and makes decisions that are acted upon by using motor function

  6. Functions of the Nervous System • Motor functions are responses to sensory information • Employ peripheral nerves that carry impulses from CNS to responsive parts called effectors • Effectors are outside the NS and include a. Muscles – contract when stimulated b. Glands – secrete hormones when stimulated (glandular epithelial tissue)

  7. Glandular Epithelium

  8. Functional Organization

  9. Anatomical and Functional Organizaton

  10. Nervous Tissue • Neurons (nerve cells) are the functional unit; • Specialized to react to physical & chemical changes in their surroundings and conduct nerve impulses • Neuroglia support the physiological needs of neurons • Fig. 8-2, 8-3, 3-21 pg. 70

  11. Anatomy of a Neuron

  12. Anatomy of a Neuron • dendrite – provide receptive surfaces to carry impulses toward cell body; relatively short & highly branched • cell body – contains various organelles • axon – a single axon arises from cell body; transmit impulses away from the cell body; some are surrounded by specialized glia cells called Schwann cells that form myelin sheath

  13. Functional Differences of Neurons • motor neurons – transmit impulses form brain to an effector (efferent neurons) (multipolar) • sensory neurons – transmit impulses to spinal cord & brain (afferent neurons) (most unipolar, some bipolar) • interneurons – carry impulses from sensor neurons to motor neurons (multipolar)

  14. Refex Arc

  15. Structural Differences of Neurons • bipoloar – only 2 nerve fibers, one arising from either end; found in specialized parts of the eyes, nose, & ears

  16. Structural Differences of Neurons • unipolar/monopolar – single nerve fiber extending from its cell body; found in ganglia outside the brain or spinal cord

  17. Structural Differences of Neurons • multipolar – many nerve fibers arising from their cell bodies; most common type of neuron in the brain & spinal cord (ganglia – a mass of neuron cell bodies, usually outside the CNS)

  18. Neuroglia Cells • Accessory cells – Schwann cells, astrocytes, microglia, oligodendrocytes, ependymal (We will discuss the functions of each of these types of cell during the lab.) • Fill spaces, support neurons, hold nervous tissue together; play a role in the metabolism of glucose, help regulate K+ concentration, produce myelin, and carry on phagocytosis • Fig. 8-3

  19. Types of Neuroglia Cells

  20. Regeneration of Nerve Fibers • If a neuron cell body is injured, the neuron is likely to die • If the axon of a peripheral nerve fiber is severed, its distal portion will die, but the proximal portion may regenerate & re-establish its former connections • Significant regeneration is unlikely to take place in the CNS

  21. Structure of Peripheral Nerves – consists of bundles of nerve fibers surrounded by connective tissue – Fig. 8-4 • Epineurium – outermost layer; dense and include many collagenous fibers • Fasicicle – a bundle of nerve fibers • Perineurium – less dense connective tissue surrounding fascicle • Endoneurium – small amount of loose connective tissue that surrounds individual nerve fibers

  22. Cell Membrane Potential and Nerve Impulses – Fig. 8-6 & 8-7

  23. Resting Potential •

  24. A cell membrane is usually electrically charges or polarized so that outside is + and inside is - • Resting Potential (-70 mvolts) • Nerve cell is not conducting impulses • [Na+] is greater on the outside of the cell and [K+] is greater on the inside of the cell • There is a large number of negatively charged ions inside the cell which can’t diffuse out • At rest inside stays negative because K+ can diffuse easily out of the cell through open channels; Na+ can’t diffuse as easily into cells through “their” protein channels • Na+ /K+ pump (active transport) – maintains system so equilibrium is not reached; therefore, Na+ is always being pumped back out and K+ is being pumped back in

  25. Local Potential Changes

  26. Local Potential Changes • Stimulation of a membrane affects its resting potential in a local region (light, temp., other neurons • Membrane starts to become depolarized (moves toward zero) • Threshold potential is reached which causes an action potential

  27. Action Potential •

  28. Action Potential 1/1000 sec. or less • At threshold, Na+ channels open and Na+ diffuse inward causing depolarization • About the same time K+ channels open and K+ diffuses outward, causing repolarization • This rapid change in potential is an action potential • Many action potentials can occur before an active transport mechanism re-establishes the original resting potential • The propagation of actions potentials along a nerve fiber is an impulse

  29. Refractory Period • Refractory Period • A brief time (10-30 m/sec.) following the passage of a nerve impulse when the membrane is unresponsive to ordinary stimuli • Membrane must return to resting potential before it can be stimulated again • All – or – None Response • If a nerve fiber responds at all, it responds completely • All impulses carried on that fiber will be of the same strength

  30. Coding & Interpretation of Messages • Frequency of action potentials – a weak stimulus initiates only a few action potentials/sec., a strong stimulus initiates many (upper limit because of refractory period) • Duration of a burst of action potentials – a weak stimulus may give rise to a short burst of pulses in the neuron, a strong stimulus a longer burst • Number & kinds of neurons firing – The threshold needed to initiate a nerve impulse varies from one neuron to another. Thus a weak stimulus will cause only a few neurons to fire, strong will fire all of these neurons, plus others with higher thresholds.

  31. Impulse ConductionMyelinatedvsUnmyelinated

  32. Impulse Conduction • Unmyelinated fibers conduct impulses that travel over their entire surface • Myelinated – impulses travel from node to node • Impulse conduction is more rapid on myelinated fibers with large diameters •

  33. The Synapse – The junction between 2 neurons. A synaptic cleft is the gap between parts of two neurons at a synapse. Fig. 8-7 • Impulses usually travel from a dendrite or cell body, then along the axon to a synapse • Axons have synaptic knobs at their distal ends that secrete neurotransmitters • The neurotransmitter is released when a nerve impulse reaches the end of an axon and the neurotransmitter diffuses across the synaptic cleft. • When the neurotransmitter reaches the nerve fiber on the distal side of the cleft, a nerve impulse is triggered.

  34. The Synapse •

  35. Nerve Pathways – the route followed by an impulse as it travels through the nervous system, Fig. 8-5 • Reflex Arc – simplest nerve pathway • A reflex arc usually includes a sensory neuron, a reflex center composed of interneurons, and a motor neuron • Reflex arc is the behavioral unit of the nervous system • Reflex Behavior • Reflexes are automatic unconscious responses to changes • Help maintain homeostasis • Knee jerk – 2 neurons • Withdrawal reflexes are protective actions

  36. Reflex Arc •