Download
kasus bhopal n.
Skip this Video
Loading SlideShow in 5 Seconds..
Kasus Bhopal PowerPoint Presentation
Download Presentation
Kasus Bhopal

Kasus Bhopal

318 Views Download Presentation
Download Presentation

Kasus Bhopal

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Kasus Bhopal • December 3-4, 1984: 40 tonnes of methyl iso-cyanate (MIC) released from Union Carbide plant at Bhopal • Accidental release caused by leakage of water into MIC storage tank • None of the six safety systems worked • Safety standards and maintenance system ignored for months • Complete absence of community information and emergency procedures • Public alarm system operated after the gas had leaked for nearly four hours

  2. Industrial disaster “Industrial disasters are caused by chemical, chemical, mechanical, civil, electrical, or other process failures due to accident, negligence or incompetence, in an industrial plant which may spill over to the areas outside the plant causing damage to life and property.”

  3. Chemical disaster “Chemical disasters are occurrence of emission, fire or explosion involving one or more hazardous chemicals in the course of industrial activity or storage or transportation or due to natural events leading to serious effects inside or outside the installation likely to cause loss of life and property including adverse effects on the environment.”

  4. Major industrial disasters that shaped public policy • Triangle Factory Fire New York (USA) 1911 100 garment workers died in fire • Minamata Mercury Disaster (Japan) 1932-68 3,000 people suffered, severe mercury poisoning symptoms, deformities or death • Seveso Dioxin Disaster (Italy) 1976 3,000 animals died, 70,000 slaughtered to prevent dioxins entering food chain • Bhopal Gas Disaster (India) 1984 15,000 killed, over 500,000 affected

  5. Bhopal Gas Tragedy • Worst industrial disaster in history • 2,000 people died on immediate aftermath • Another 13,000 died in next fifteen years • 10-15 persons dying every month • 520,000 diagnosed chemicals in blood causing different health complications • 120,000 people still suffering from • Cancer • Tuberculosis • Partial or complete blindness, • Post traumatic stress disorders, • Menstrual irregularities • Rise in spontaneous abortion and stillbirth

  6. Second generation effect • ICMR, IMA, AMA studies show • Children born with genetic defects • Growth retardation in boys • Hormonal chaos among girls • Ground water contamination with high level of mercury, lead, nickel, VOCs and HCH • High prevalence of skin and gastro-intestinal diseases • Bioaccumulation of toxins found in vegetables and breast milk

  7. Chisso Corporation • Chisso = nitrogen • Produced fertilizer • 1907: Chisso Corp. builds a fertilizer plant in the Minamata. • Job openings • 1925: plant begins dumping untreated wastewater into Minamata Bay • Kills fish • Fisherman Payoffs http://www.japanfocus.org/images/592-3.jpg

  8. Chisso Corporation • 1932: Chisso plant begins to produce acetaldehyde to be used in the production of plastic, perfume and drugs. • Acetaldehyde is made from acetylene and water with a mercury catalyst. • After WWII plastic production boomed and Chisso Corp. grew. • By 1970: Chisso brought Japan 60% of its income and owned nearly 70% of the land in Minamata. http://www-personal.umich.edu/~tobin/Smith2.jpg

  9. Bizarre Behavior in Animals • Early 1950’s: • Dead fish wash ashore • Crows fall out of sky • Suicidal dancing cats • Mercury moves up the food chain. http://flickr.com/photos/tropicalrips/127535537/

  10. Mid 1950’s: Behavior Seen in Humans • Behaviors witnessed: • Loss of motor control in hands • Violent tremors • Swaggered walk • Insanity • “Cat-dancing” disease • Nobody knew the cause of the epidemic. • Many hid for fear of ridicule http://www.hamline.edu/personal/amurphy01/es110/eswebsite/ProjectsSpring03/ebarker/Minamata%20Web%20Page.htm

  11. The Aftermath • 30-70 tons of methyl mercury was dumped into the Bay • 10,000 people affected by Minamata disease. • 3,000 died • Compensation has been given to families as recently as 1990. • Highest compensation for the disaster was just under $3,000. http://www.physorg.com/news110359851.html

  12. Symptoms of the Disease Methylmercury poisoning Minamata Japan, 1930s-1950s W. Eugene SmithTomoko Uemura in Her BathMinamata, 1972 • Mild • Ataxia • Muscle weakness • Narrowed field of vision • Hearing and speech damage • Severe cases cause • Insanity • Paralysis • Coma • Death

  13. More Symptoms http://picasaweb.google.com/jazzyv0504/SAKURA#5065603192708172658 • A significant effect of Minamata is the onset of symptoms similar to those of cerebral palsy • Fetal Minamata Disease • A pregnant mother ingests toxic fish and the methylmercury concetrates inside the placenta. • Harms the fetus while the mother is relatively unaffected

  14. These are all children with congenital (fetal) Minamata Disease due to intrauterine methyl mercury poisoning (Harda 1986).

  15. Examples of chemicals in food, air, water linked to birth defects Cross placenta to embryo Defects of brain, nerves, heart Defects of skeleton (often limbs) Blindness, deafness Spasticity Mental retardation Defects of heart, brain Blindness, deafness Decreased fetal growth Defects of face (cleft palate/lip) Emotional & learning problems

  16. Mercury: The Basics • Mercury (Hg) is the only metal that is liquid at room temperature. It melts at -38.9oC and boils at 356.6oC. • Mercury conducts electricity, expands uniformly with temperature and easily forms alloys with other metals (called amalgams). • For these reasons, it is used in many products found in homes and schools.

  17. Mercury Chemistry • Mercury exists in three oxidation states: • Hg0 (elemental mercury). • Hg22+ (mercurous). • Hg2+ (mercuric). • Mercurous and mercuric form numerous inorganic and organic chemical compounds. • Organic forms of mercury, especially methyl mercury, CH3Hg(II)X, where “X” is a ligand (typically Cl- or OH-) are the most toxic forms.

  18. Uses of Mercury • We use its unique properties to conduct electricity, measure temperature and pressure, act as a biocide, preservative and disinfectant and catalyze reactions. • It is the use of mercury in catalysis that contributed to the events in Minamata. • Other uses include batteries, pesticides, fungicides, dyes and pigments, and the scientific apparati.

  19. Mercury in the Environment • Upwards of 70% of the mercury in the environment comes from anthropogenic sources, including: • Metal processing, waste incineration, and coal-powered plants. • Natural sources include volcanoes, natural mercury deposits, and volatilization from the ocean. • Estimates are that human sources have nearly doubled or tripled the amount of mercury in the atmosphere.

  20. Methylmercury concentrations Reference dose 0.1g/kg bw/day 135-lb. woman: 1.5oz. Swordfish or 7 oz. tuna/week 50-lb. child: 0.5oz. Swordfish or 2.6 oz. tuna/week • Freshwater fish 0.1-0.4 ppm • Ocean fish 0.6-0.8 ppm • Predator fish > 1.0ppm • Fish in “polluted” water > 10ppm • Fish from Minamata Bay ~ 50ppm • Whale meat ~4ppm • Whale liver >1000ppm

  21. Four Major Pollution di Jepang Award winning photo of Minamata Disease victim Yokkaichi 1961 Yokkaichi today

  22. Congenital Minamata disease;Mercury toxicity, Japan 1955 • Microcephaly • Cerebral palsy / spastic • Mental deficits • Malformation of ears,heart, skeleton, eyes

  23. Bhopal, India In Dec. 3, 1984, an explosion at the Union Carbide plant released a deadly cocktail of poison gas made up of methyl isocyanante, hydrogen cyanide, monomethyl amine, carbon monoxide and up to 20 other chemicals. 4 months later report on 1,430 deaths. By 1999, the toxic gas killed at least 16,000 according to local estimates; tens of thousands continue to suffer. This presentation is based on the text articles, Bhopal, pp. 347-352, and Chemical Safety in Developing Countries, the lessons of Bhopal, pp. 353-358

  24. Arsenic toxicity from well waters in Bangladesh and CCA • Bangladesh may be heading for an epidemic of arsenic poisoning with an estimated 60 million regularly ingesting arsenic through drinking contaminated groundwater • Surveys of groundwater used for drinking and cooking have identified unacceptably high concentrations of arsenic in several thousand deep tube wells, Dr Karim said. Some wells contain 0.4 mg/l of arsenic, 40 times the acceptable concen BMJ. 2000 March 25; 320(7238): 826. Half of Bangladesh population at risk of arsenic poisoning

  25. Dioxin and Chloracne • VIENNA, Austria (CNN) -- Dioxin poisoning caused the disfiguring illness afflicting Ukrainian opposition presidential candidate Viktor Yushchenko, doctors at an Austrian hospital said Saturday. • Doctors said at a news conference that they suspect a "third party" administered the poison in September, possibly by putting it in Yushchenko's soup.