230 likes | 373 Views
This presentation by Dr. Christoph Wieland and colleagues from Technische Universität München, discusses the challenges and opportunities for integrating flexible renewable energy sources into the electricity market. Key topics include analyzing user behavior, control strategies for power supply, and technology examples relevant to Germany's energy transition. The session underscores the importance of sustainability while addressing local and national imbalances in electricity supply and demand, emphasizing the need for local renewable capacities and innovative technologies for a successful energy transition.
E N D
Flexible Renewables in theElectricity System • Dr.-Ing. C. Wieland • Sebastian Eyerer, M.Sc. • Prof. Dr.-Ing. H. Spliethoff • Technische Universität München • Fakultät für Maschinenwesen • Lehrstuhl für Energiesysteme • Brussels, 10. January 2019
Outline • User Behaviour • Control Power as Such • Key IssuesLearnedFrom Germany • ExamplesofSuitable Technologies • Sustainability in Energy Transition Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
1. Electricitydemandof individual households Load/demandisfluctuatingdepending on userbehavior Standard loadprofilesarederived, somehowapproximateorforecastthedemand Stochasticuserbehaviorissuperpositioned Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
1. Electricitydemand in Germany Source: https://www.energy-charts.de/power.htm Wind variessignificantly, solar haslowcontributions, coaland gas areenablingintegration Daily fluctuations Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
1. Electricitydemand in Germany Source: https://www.energy-charts.de/power.htm Wind and solar varysignificantly, coaland gas areenablingintegration Uptotwosignificantfluctuations per day, due to high solar share Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
2. Typesofcontrol power Power Primary control power Secondarycontrol power Minute reserve power Time Source: [1] Unscheduled power plant outages Load fluctuations Forecastingerrorsofload Forecastingerrorsofrenewableenergyproduction Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
Control power canbepurchased on markets, providedby power plants
3. LocalImbalances I National imbalancesbetweensupplyanddemand (Wind: North, Demand: South) Electricitygridlimitationscauseelectricityflowthroughgrids in neighboring countries Frequentfraudscause „protectionism“ byinstallationofquadratureboosters/phaseshifters Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
3. LocalImbalances II National imbalancesbetweensupplyanddemand (Wind: North, Demand: South) Wind plantsarecurtailedand fossil reserve power isactivated. Double costsforwasted RES andredispatched (fossil) reserve power Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
3. No Wind (andno PV) Low wind conditionsleadtoshortage in power supply Reduced (fossil) generationcapacitycannotfullycompensate Neighboring countries needtoprovideelectricitywiththeirgenerationcapacity Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
Weneed (1) morelocalrenewableanddispatchablecapacitiesand (2) togeneratelocalmicrogrids
4. Example: Biomass IncreasingICEngineand/or Biogas tank forenablingflexibility potential Source: adaptedfrom [2] and [3] Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
4. Example: Geothermal CHP Source: [4] Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
4. Example: Geothermal CHP Industrial wasteheat Heatpumps Increasingtheflexibilityofrenewable CHP technologyforenablingflexibility potential Power-to-heat Heatstorage Source: [4] Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
4. Example: Aggregators (e.g. Next Kraftwerke) • Biogas CHP • PV Systems • Wind power plants • Natural gas CHP • Dispatchableplants • Hydroplants • Large scalerenewableplants • Energy intesiveindustry Source: [5] Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
4. Example: Aggregators (e.g. Next Kraftwerke) • Pooling generationcapacity • Placingcontrol power on markets • Restrictionsformarketaccess in Germany: • 5 MW (until 2018) • 1 MW (from 2018) • What‘supnext? Source: [5] Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
5. Costs vs. Sustainability • Triple-Bottom-Line • Eachsectionistreatedequallyandof same importance. • Priority Modell • Sections will beprioritizedwithincreasedimportance Social Environmental Financial Environ-mental Social Financial Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
Weneedtoreconsidertheimportanceof environmental issues in a sustainabledevelopment.
References • [1] Eyerer et al.: Praxisforum Geothermie.Bayern 2017 • [2] Schuster et al.: Energetic and economic investigation of Organic Rankine Cycle applications, Applied Thermal Engineering, 29 (2009), pp. 1809–1817 • [3] J. Karl, Dezentrale Energiesysteme, Neue Technologien im liberalisierten • Energiemarkt, Oldenbourg Verlag, München, 2004 • [4] Dawo: Strom aus Geothermie – Stromwäsche oder reales Potential?, Seminarvortrag, Lehrstuhl für Energiesysteme, 19.10.2018 • [5] Aengenvoort: Next Kraftwerke – Intelligente Kombination Erneuerbarer/Konventioneller Technik / Insellösungen, Vortragsreihe des VDI-AK Energietechnik und des Lehrstuhls für Energiesysteme, München, 14.03.2016 Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
Flexible Renewables in theElectricity System • Dr.-Ing. C. Wieland • Sebastian Eyerer, M.Sc. • Prof. Dr.-Ing. H. Spliethoff • Technische Universität München • Fakultät für Maschinenwesen • Lehrstuhl für Energiesysteme • Brussels, 10. January 2019
Back-Up RE Costs Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland