1 / 23

Karnaugh Map Method

Karnaugh Map Method. Karnaugh Map Technique. K-Maps, like truth tables, are a way to show the relationship between logic inputs and desired outputs. K-Maps are a graphical technique used to simplify a logic equation. K-Maps are very procedural and much cleaner than Boolean simplification.

msherwood
Download Presentation

Karnaugh Map Method

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Karnaugh Map Method

  2. Karnaugh Map Technique • K-Maps, like truth tables, are a way to show the relationship between logic inputs and desired outputs. • K-Maps are a graphical technique used to simplify a logic equation. • K-Maps are very procedural and much cleaner than Boolean simplification. • K-Maps can be used for any number of input variables, BUT are only practical for fewer than six.

  3. K-Map Format • Each minterm in a truth table corresponds to a cell in the K-Map. • K-Map cells are labeled so that both horizontal and vertical movement differ only in one variable. • Once a K-Map is filled (0’s & 1’s) the sum-of-products expression for the function can be obtained by OR-ing together the cells that contain 1’s. • Since the adjacent cells differ by only one variable, they can be grouped to create simpler terms in the sum-of-product expression.

  4. X 0 0 1 1 Y 0 1 0 1 Z 1 0 1 1 X X 1 1 Y 0 1 Y Truth Table -TO- K-Map minterm 0  minterm 1  minterm 2  minterm 3  2 0 1 3

  5. X Y X Y X X X X X X X X 0 0 1 0 1 0 0 0 Y Y Y Y 0 0 0 1 1 0 0 0 Y Y Y Y X Y 2 Variable K-Map : Groups of One X Y

  6. X Y X Y X X X X 1 1 1 1 Y Y 1 Z = X Y + X Y = Y ( X + X ) = Y 0 0 0 0 Y Y Y = Z Adjacent Cells

  7. Groupings • Grouping a pair of adjacent 1’s eliminates the variable that appears in complemented and uncomplemented form. • Grouping a quad of 1’s eliminates the two variables that appear in both complemented and uncomplemented form. • Grouping an octet of 1’s eliminates the three variables that appear in both complemented and uncomplemented form, etc…..

  8. X Y X X X X X X X X 1 0 1 0 0 1 1 0 Y Y Y Y 0 1 1 0 0 1 0 1 Y Y Y Y 2 Variable K-Map : Groups of Two X Y

  9. X X 1 Y 1 1 1 1 Y 2 Variable K-Map : Group of Four

  10. R 0 0 1 1 S 0 1 0 1 T 1 0 1 0 S R R 2 0 S 1 3 S 1 1 T = F(R,S) = S 0 0 Two Variable Design Example

  11. B 0 0 1 1 0 0 1 1 C 0 1 0 1 0 1 0 1 Y 1 0 1 1 0 0 1 0 A 0 0 0 0 1 1 1 1 A B C B C B C minterm 0  minterm 1  minterm 2  minterm 3  minterm 4  minterm 5  minterm 6  minterm 7  1 0 0 0 A B C 1 0 1 1 3 Variable K-Map : Vertical 0 4 1 5 3 7 2 6

  12. B 0 0 1 1 0 0 1 1 C 0 1 0 1 0 1 0 1 Y 1 0 1 1 0 0 1 0 A 0 0 0 0 1 1 1 1 A B A B A B A B C C 1 1 1 0 0 1 0 0 3 Variable K-Map : Horizontal minterm 0  minterm 1  minterm 2  minterm 3  minterm 4  minterm 5  minterm 6  minterm 7  0 2 6 4 1 3 7 5

  13. B C B C B C A B A B A B A C A B A B A B A B C B C A C A C C 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 A B A C 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 3 Variable K-Map : Groups of Two

  14. A B A B A B B B A B C C C C 1 1 1 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 1 0 1 1 0 A A 0 1 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 3 Variable K-Map : Groups of Four

  15. A B A B A B A B C 1 C 1 1 1 1 1 1 1 1 3 Variable K-Map : Group of Eight

  16. Simplification Process • Construct the K-Map and place 1’s in cells corresponding to the 1’s in the truth table. Place 0’s in the other cells. • Examine the map for adjacent 1’s and group those 1’s which are NOT adjacent to any others. These are called isolated 1’s. • Group any hex. • Group any octet, even if it contains some 1’s already grouped, but are not enclosed in a hex. • Group any quad, even if it contains some 1’s already grouped, but are not enclosed in a hex or octet. • Group any pair, even if it contains some 1’s already grouped, but are not enclosed in a hex, octet or quad. • Group any single cells remaining. • Form the OR sum of all the terms grouped.

  17. K 0 0 1 1 0 0 1 1 L 0 1 0 1 0 1 0 1 M 1 0 1 1 0 1 0 0 J 0 0 0 0 1 1 1 1 J K J K J K J K J L 0 2 6 4 L 1 3 7 5 L J K L J K 1 1 0 0 0 1 0 1 M = F(J,K,L) = J L + J K + J K L Three Variable Design Example #1

  18. B 0 0 1 1 0 0 1 1 C 0 1 0 1 0 1 0 1 Z 1 0 0 0 1 1 0 1 A 0 0 0 0 1 1 1 1 A B A B A B A B B C 0 2 6 4 C 1 3 7 5 C 1 0 0 1 Z = F(A,B,C) = A C + B C 0 0 1 1 Three Variable Design Example #2 A C

  19. B 0 0 1 1 0 0 1 1 C 0 1 0 1 0 1 0 1 F2 1 0 0 1 1 1 0 1 A 0 0 0 0 1 1 1 1 B C B C B C B C A A B B C A 1 0 1 0 F2 = F(A,B,C) = B C + B C + A B F2 = F(A,B,C) = B C + B C + A C 1 1 1 0 Three Variable Design Example #3 A C 0 1 3 2 5 7 4 6 B C

  20. W 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Y 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 Z 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 F1 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1 X 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 W X Y Z W X Y Z W X Y Z W X 1 1 0 1 0 1 1 1 0 1 1 0 Y Z 0 0 1 0 Four Variable K-Map minterm 0  minterm 1  minterm 2  minterm 3  minterm 4  minterm 5  minterm 6  minterm 7  minterm 8  minterm 9  minterm 10  minterm 11  minterm 12  minterm 13  minterm 14  minterm 15  0 4 12 8 1 5 13 9 3 7 15 11 2 6 14 10

  21. W X Y Z X Z W X Y Z W X Y Z W X X Z 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 X Z 0 0 1 0 0 0 0 0 0 0 1 0 Y Z 0 1 0 1 0 0 0 1 0 0 0 1 Four Variable K-Map : Groups of Four

  22. W X W 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Y 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 Z 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 F1 1 0 1 0 1 0 1 0 0 0 1 0 1 1 0 0 X 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 Y Z W X W Z Y Z W X Y Z W X 0 4 12 8 1 1 1 0 1 5 13 9 0 0 1 0 Y Z 3 7 15 11 0 0 0 0 2 6 14 10 1 1 0 1 F1 = F(w,x,y,z) = W X Y + W Z + X Y Z W X Y X Y Z Four Variable Design Example #1 min 0  min 15 

  23. W X W 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Y 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 Z 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 F2 1 x 1 0 0 x 0 x x 1 0 1 x 1 1 1 X 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 X Y Z Y Z W X Y Z W X W X Y Z 1 X 0 1 0 4 12 8 0 X X 0 1 5 13 9 X 1 1 1 Y Z 3 7 15 11 X 1 1 0 2 6 14 10 F2 = F(w,x,y,z) = X Y Z + Y Z + X Y Four Variable Design Example #2 min 0  min 15  Y Z X Y

More Related