160 likes | 236 Views
Introducing a novel multi-scale visual tracking approach utilizing sequential belief propagation with Monte Carlo implementation. The method addresses challenges such as abrupt motion, frame dropping, and large camera motion, by collaboratively analyzing different scales and features.
E N D
Multi-scale Visual Tracking by Sequential Belief Propagation Gang Hua, Ying Wu Dept. Electrical & Computer Engr. Northwestern University Evanston, IL 60208 {yingwu,ganghua}@ece.northwestern.edu CVPR'2004
Abrupt Motion • sudden changes of target dynamics • frame dropping • large camera motion • etc. CVPR'2004
Challenges • Most existing visual tracking methods assume either small motion or accurate motion models • Abrupt motion violates them • Hierarchical search is not enough • Unidirectional information flow • Error accumulation from coarse to fine • No mechanism to recover failure in coarse scales CVPR'2004
Our Idea • Different scales provide different salient visual features • Bi-directional information flow among different scales should help • Different scales “collaborate” CVPR'2004
Our Formulation • A Markov network • X={Xi ,i=1..L}—target state in different scales • Z={Zi ,i=1..L}—Image observation of the target in different scales • Undirected link— Potential function Ψij(fi(Xi),fj(Xj)), • Directed link—Observation function Pi(Zi|Xi) • The task is to infer Pi (Xi|Z), i=1..L Fig.1. Markov Network (MN) CVPR'2004
Belief propagation (BP) • The joint posterior • Belief propagation [Pearl’88, Freeman’99] CVPR'2004
Dynamic Markov Network • Xt={Xt,i ,i=1..L}—Target states at time t • Zt={Zt,i ,i=1..L}—Image observations at time t • P(Xt,i|Xt-1,i)—Dynamic model in the ith scale • Zt={Zk, k=1..t}—Image observation up to time t Fig.2. Dynamic Markov Network (DMN) modeling target dynamics CVPR'2004
Bayesian inference in DMN • Markovian assumption • The Bayesian inference is • Independent dynamics model CVPR'2004
Sequential BP • Message Passing in DMN • Belief update in DMN CVPR'2004
Sequential BP Monte Carlo • To handle non-Gaussian densities • Monte Carlo implementation • A set of collaborative particle filters CVPR'2004
Algorithm CVPR'2004
Experiments: bouncing ball • Sudden dynamics changes fail the single particle filters The tracking result of the Sequential BP CVPR'2004
Experiments: dropping frames • Dropping 9/10 of the video frames BP iteration at a specific time instant CVPR'2004
Experiments: shaking camera CVPR'2004
Experiments: scale changes CVPR'2004
Conclusion& future work • Contributions • A new multi-scale tracking approach • A rigorous statistical formulation • A sequential BP algorithm with Monte Carlo • Future work • Theoretic study& comparison of the BP with the mean field variational approach • Learning model parameters CVPR'2004