html5-img
1 / 62

Bulk Properties of QCD Matter

Bulk Properties of QCD Matter. Many thanks to organizers !. Kai Schweda, University of Heidelberg / GSI Darmstadt. Outline. Introduction Hadron Abundances - T ch Collective Flow - T fo ,  Heavy Quarks - open charm and quarkonia. Introduction. Quark Gluon Plasma.

molly
Download Presentation

Bulk Properties of QCD Matter

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Bulk Properties of QCD Matter Many thanks to organizers ! Kai Schweda, University of Heidelberg / GSI Darmstadt

  2. Outline • Introduction • Hadron Abundances - Tch • Collective Flow - Tfo,  • Heavy Quarks - open charm and quarkonia

  3. Introduction

  4. Quark Gluon Plasma Source: Michael Turner, National Geographic (1996) • Quark Gluon Plasma: • Deconfined and • thermalized state of quarks and gluons •  Study partonic EOS at RHIC and LHC(?) Probe thermalization using heavy-quarks

  5. Heavy quarks with ALICE at LHC: - Study medium properties - pQCD in hot and dense environment • FAIR/GSI program: - Search for the possible phase boundary. - Chiral symmetry restoration Nuclear phase diagram Energy scan

  6. Colliding Heavy Nuclei

  7. High-Energy Nuclear Collisions Time  • 1) Initial condition: 2) System evolves: 3) Bulk freeze-out • Baryon transfer - parton/hadron expansion - hadronic dof • - ET production - inel. interactions cease: • Partonic dof particle ratios, Tch, mB • - elas. interactions cease • Particle spectra, Tth, <bT> Plot: Steffen A. Bass, Duke University

  8. Collision Geometry z Au + Au sNN = 200 GeV x Non-central Collisions Uncorrected Number of participants:number of incoming nucleons in the overlap region Number of binary collisions:number of inelastic nucleon-nucleon collisions Charged particle multiplicity collision centrality Reaction plane: x-z plane

  9. Hadron Abundances

  10. Particle Multilplicities PHOBOS fit HIJING BBar Armesto et al. AMPT Eskola CGC KLN ASW DPMJET-III EHNRR • at LHC, dN/dh 1000 - 3000 • estimate energy density PHOBOS compilation: W. Busza, SQM07. Theory points: HI at LHC – last call for predictions, CERN, May 2007.

  11. EoS from Lattice QCD • 1) Large increase in  ! • Large increase in Ndof: Hadrons vs. partons 2) TC~ 160 MeV 3) Boxes indicate max. initial temperatures • Longest expansion duration at LHC • Expect large partonic collectivity at LHC SPS RHIC LHC ? Z. Fodor et al, JHEP 0203:014(02) C.R. Allton et al, hep-lat/0204010 F. Karsch, Nucl. Phys. A698, 199c(02).

  12. HI - Collision History • Tc(ritical): quarks and gluon hadrons, Tc(ritical) = 160 MeV • Tch(emical): hadron abundancies freeze out • Tfo: particle spectra freeze out Plot: R. Stock, arXiv:0807.1610 [nucl-ex].

  13. Solar Spectrum Wavelength and Intensity solely determined by temperature Tsolar = 5500 °C(at the sun’s surface) Graphik: Max-Plack-Institut für Plasmaphysik

  14. Wie heiss ist die Quelle ? 1000 • Lichtquelle  Teilchenquelle • Häufigkeit von Teilchen am besten beschrieben durch T = 2 000 000 000 000 C = 2 Trillionen C  100 000 mal heisser als im Innern der Sonne ! p N K+ 100. L K0 K- h Teilchenhäufigkeit N X 10.0 f L W 1.0 X W 0.1 0 0.4 0.8 1.2 1.6 E = mc2 (GeV)

  15. Chemical Freeze-out Model Refs. J.Rafelski PLB(1991)333 P. Braun-Munzinger et al., nucl-th/0304013 Hadron resonance ideal gas Density of particle i Qi : 1 for u and d, -1 for u and d si : 1 for s, -1 for s gi:spin-isospin freedom mi : particle mass Tch : Chemical freeze-out temperature mq : light-quark chemical potential ms : strange-quark chemical potential V : volume term, drops out for ratios! gs : strangeness under-saturation factor mB = 3mq mS = mq-ms All resonances and unstable particles are decayed Compare particle ratios to experimental data

  16. Hadron Yield - Ratios 1) At RHIC: Tch = 160 ± 10 MeV B = 25 ± 5 MeV 2) S= 1.  The hadronic system is thermalized at RHIC. 3)Short-lived resonances show deviations.  There is life after chemical freeze-out. RHIC white papers - 2005, Nucl. Phys. A757, STAR: p102; PHENIX: p184; Statistical Model calculations: P. Braun-Munzinger et al. nucl-th/0304013.

  17. Chemical Freeze-Out vs Energy • With increasing energy: • Tch increases and saturatesat Tch = 160 MeV • Coincides with Hagedorn temperature • Coincides with early lattice results limiting temperature for hadrons, Tch 160 MeV ! • mB decreases, mB = 1MeV at LHC •  Nearly net-baryon free ! A. Andronic et al., NPA 772 (2006) 167.

  18. QCD Phase Diagram

  19. Baryon Ratios • With increasing energy: • Baryon ratios approach unity • At LHC, pbar / p  0.95 with increasing collision energy, production of matter and anti-matter gets closer Compilation: N. Xu

  20. ‘Elementary’ p+p Collisions • Low multiplicities  use canonical ensemble:Strangeness locally conserved! • particle yields are well reproduced • Strangeness not equilibrated ! (gs = 0.5) Statistical Model Fit: F. Becattini and U. Heinz, Z. Phys. C 76, 269 (1997).

  21. HI - Collision History • Tc(ritical): quarks and gluon hadrons, Tc(ritical) = 160 MeV • Tch(emical): hadron abundancies freeze out, Tch(emical) = 160 MeV • Tfo: particle spectra freeze out Plot: R. Stock, arXiv:0807.1610 [nucl-ex].

  22. Collective Flow

  23. Pressure, Flow, … • Thermodynamic identity • – entropy p – pressure U – energy V – volume t = kBT, thermal energy per dof • In A+A collisions, interactions among constituentsand density distribution lead to: pressure gradient  collective flow • number of degrees of freedom (dof) • Equation of State (EOS) • cumulative – partonic + hadronic

  24. Typical mass ordering in inverse slope from light  to heavier Two-parameter fit describes yields ofp, K, p, L Tth = 90  10 MeV <bt> = 0.55  0.08 c  Disentangle collective motion from thermal random walk Momentum Distributions* Tth=107±8 [MeV] <bt>=0.55±0.08 [c] n=0.65±0.09 2/dof=106/90 ] c)-1 [(GeV/ solid lines: fit range dy N T dp d p 2 p p K (dE/dx) K (kink) p K (dE/dx) K (kink) p L L 2 *Au+Au @130 GeV, STAR

  25. (anti-)Protons From RHIC Au+Au@130GeV More central collisions Centrality dependence: - spectra at low momentum de-populated, become flatter at larger momentum stronger collective flow in more central coll.! STAR: Phys. Rev. C70, 041901(R).

  26. Thermal Model + Radial Flow Fit • Source is assumed to be: • in local thermal equilibration: Tfo • boosted in transverse radial direction: r = f(bs) boosted E.Schnedermann, J.Sollfrank, and U.Heinz, Phys. Rev. C48, 2462(1993) random

  27. D-meson collective flow Large collective flow velocity  Spectrum moves to larger momentum

  28. HI - Collision History • Tc(ritical): quarks and gluon hadrons, Tc(ritical) = 160 MeV • Tch(emical): hadron abundancies freeze out, Tch(emical) = 160 MeV • Tfo: particle spectra freeze out, Tfo 100 MeV :, K, p Plot: R. Stock, arXiv:0807.1610 [nucl-ex].

  29. Kinetic Freeze-out at RHIC 1) Multi-strange hadrons  and  freeze-out earlier than (p, K, p)  Collectivity prior to hadronization 2) Sudden single freeze-out*: Resonance decays lower Tfo for (p, K, p)  Collectivity prior to hadronization Partonic Collectivity ? STAR Preliminary STAR Data: Nucl. Phys. A757, (2005 102), *A. Baran, W. Broniowski and W. Florkowski, Acta. Phys. Polon. B 35 (2004) 779.

  30. Anisotropy Parameter v2 coordinate-space-anisotropy  momentum-space-anisotropy y py px x Initial/final conditions, EoS, degrees of freedom

  31. v2 in the Low-pT Region P. Huovinen, private communications, 2004 • v2 approx. linear in pT, mass ordering from light  to heavier  • characteristic of hydrodynamic flow ! • sensitive to equation of state

  32. Non-ideal Hydro-dynamics • finite shear viscosity reduces elliptic flow • many caveats, e.g.: - initial eccentricity  (Glauber, CGC, …) - equation of state - hadronic contribution to /s String theory predicts: /s > 1/4 M.Luzum and R. Romatschke, PRC 78 034915 (2008); P. Romatschke, arXiv:0902.3663.

  33. Elliptic Flow vs Collision Energy Glauber initial conditions • Centrality dependence:- initial eccentricity - overlap area S • Collision energy dep.:- multiplicity density dNch/dy • in central collisions at RHIC, hydro-limit seems reached ! NA49, Phys. Rev. C68, 034903 (2003);STAR, Phys. Rev. C66, 034904 (2002);Hydro-calcs.: P. Kolb, J. Sollfrank, and U. Heinz, Phys. Rev.C62, 054909 (2000).

  34. v2 of  and multi-strange  • Strange-quark flow - partonic collectivity at RHIC ! QM05 conference: M. Oldenburg; nucl-ex/0510026.

  35. Collectivity, Deconfinement at RHIC - v2, spectra of light hadrons and multi-strange hadrons - scaling with the number of constituent quarks At RHIC, it seems we have:  Partonic Collectivity • Deconfinement  Thermalization ? • PHENIX: PRL91, 182301(03) • STAR: PRL92, 052302(04) • S. Voloshin, NPA715, 379(03) • Models: Greco et al, PRC68, 034904(03) • X. Dong, et al., Phys. Lett. B597, 328(04). • ….

  36. Collectivity - Energy Dependence • Collectivity parameters <bT> and <v2> increase with collision energy • strong collective expansion at RHIC !<bT>RHIC 0.6 • expect strong partonic expansion at LHC, <bT>LHC 0.8, Tfo Tch K.S., ISMD07, arXiv:0801.1436[nucl-ex].

  37. Partonic Collectivity at RHIC • 1) Copiously produced hadrons freeze-out p,K,p: • Tfo = 100 MeV, T = 0.6 (c) > T(SPS) • 2)Multi-strange hadrons freeze-out: • Tfo = 160-170 MeV (~ Tch), T = 0.4 (c) • 3)Multi-strange v2: • f and multi-strange hadrons  and  do flow! • 4) Model - dependent /s: (0?),1 - 10 x 1/4 • Deconfinement & • Partonic (u,d,s) Collectivity!

  38. Heavy Quarks

  39. mc,b>> QCD : new scale • mc,b const., mu,d,s ≠ const. • initial conditions:  test pQCD, R, F probe gluon distribution • early partonic stage: diffusion (), drag (), flow probe thermalization • hadronization: chiral symmetry restoration confinement statistical coalescence J/ enhancement / suppression Heavy  flavor: a unique probe Q2 X. Zhu, M. Bleicher, S.L. Huang, K.S., H. Stöcker,N. Xu, and P. Zhuang, PLB 647 (2007) 366. time

  40. Limitations in PDFs • Most charm created from gluons, e.g. g+g  c + cbar • increasing uncertainties in gluon distribution at smaller Bjorken x: • Assume y=0, pT=0, x1=x2 • 2 x mcharm 3 GeVRHIC (s=0.2TeV): x = 0.015LHC (s=14TeV): x = 2x10-4

  41. Heavy  Quark Production Heavy-quark production at LHC, compared to RHIC expect factors Charm  10 Beauty  100 (i) Heavy-quarks abundantly produced at LHC energies ! (ii) Large theoretical uncertainties  energy scan (LHC,FAIR) will help ! Plots: R. Vogt,Eur. Phys. J. C, s10052-008-0809-x (2008).

  42. Heavy  quark Correlations • c-cbar mesons are correlated • Pair creation: back to back • Gluon splitting: forward • Flavor excitation: flat • Exhibits strong correlations ! • Baseline at zero: clear measure ofvanishing correlations !  probe thermalization among partons ! PYTHIA: p + p @ 14 TeV X. Zhu, M. Bleicher, S.L. Huang, K.S., H. Stöcker,N. Xu, and P. Zhuang, PLB 647 (2007) 366. G. Tsildeakis, H. Appelshäuser, K.S., J. Stachel, arXiv: 0908.0427.

  43. How to measure Heavy-Quark Production • e.g., D0, c = 123 m • displaced decay vertex is signature of heavy-quark decay • need precise pointing to collision vertex

  44. Heavy  Flavor production at RHIC • large discrepancy between STAR and PHENIX: factor > 2 (!) • need Si-vertex upgrades(> 2011) • large theoretical uncertainties (factor > 10) • Measure charm production at RHIC, LHC, FAIR and provide input to theory: - gluon distribution, - scales R, F Plot: J. Dunlop (STAR), QM2009, Open Heavy-flavor in heavy-ion collisions, Calcs: R. Vogt,Eur. Phys. J. C, s10052-008-0809-x (2008), M. Cacciari, 417th Heraeus Seminar, Bad Honnef (2008).

  45. Where does all the charm go? J c Ds D0 D • Total charm cross section: open charm hadrons,e.g. D0, D*, Lc, … or c,b  e() + X • Hidden-charm mesons, e.g. J/y carry ~ 1 % of total charm Statistics plot: H. Yang and Y. Wang, U Heidelberg.

  46. D0 p+ + K- Reconstruction p+ K- D0, ct = 123 mm Plot: A. Shabetai

  47. Open  Charm Performance • Measure secondary decay vertex  Direct reconstruction of D0 address heavy-quark production with 1st year of data taking • Many other channels, e.g. D+, D* • Also: single-electrons from heavy-flavor decays ALICE: PPR.vol.II, J. Phys. G 32 (2006) 1295. Simulation: 109 p+p, 108 p+Pb, 107 Pb+Pb collisions

  48. D* meson Identification • D*+ D0 + + • Identify D*+throughM[D*+ - D0] • Subtract resonance decay to D0 • Two different methods to address total charm production D*± analysis: Yifei Wang, Ph.D. thesis, University of Heidelberg, in preparation.

  49. Viele neue interessante Signale in ALICE bei LHC:z.B. Hadronen mit schweren Quarks (charm und beauty) D0, D+, D*, Ds, J/y, y’, Lc,Lb,

  50. Quarkonia

More Related