1 / 85

How to Use This Presentation

How to Use This Presentation. To View the presentation as a slideshow with effects select “View” on the menu bar and click on “Slide Show.” To advance through the presentation, click the right-arrow key or the space bar.

Download Presentation

How to Use This Presentation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. How to Use This Presentation • To View the presentation as a slideshow with effects select “View” on the menu bar and click on “Slide Show.” • To advance through the presentation, click the right-arrow key or the space bar. • From the resources slide, click on any resource to see a presentation for that resource. • From the Chapter menu screen click on any lesson to go directly to that lesson’s presentation. • You may exit the slide show at any time by pressing the Esc key.

  2. Resources Chapter Presentation Visual Concepts Sample Problems Transparencies Standardized Test Prep

  3. Chapter 16 Electric Forces and Fields Table of Contents Section 1 Electric Charge Section 2 Electric Force Section 3 The Electric Field

  4. Section 1 Electric Charge Chapter 16 Objectives • Understandthe basic properties of electric charge. • Differentiatebetween conductors and insulators. • Distinguishbetween charging by contact, charging by induction, and charging by polarization.

  5. Section 1 Electric Charge Chapter 16 Properties of Electric Charge • There are two kinds of electric charge. • like charges repel • unlike charges attract • Electric charge is conserved. • Positively charged particles are calledprotons. • Uncharged particles are calledneutrons. • Negatively charged particles are calledelectrons.

  6. Section 1 Electric Charge Chapter 16 Electric Charge

  7. Section 1 Electric Charge Chapter 16 Properties of Electric Charge, continued • Electric charge is quantized.That is, when an object is charged, its charge is always a multiple of afundamental unit of charge. • Charge is measured in coulombs (C). • The fundamental unit of charge, e, is the magnitude of the charge of a single electron or proton. e = 1.602 176 x 10–19 C

  8. Section 1 Electric Charge Chapter 16 The Milikan Experiment

  9. Section 1 Electric Charge Chapter 16 Milikan’s Oil Drop Experiment

  10. Section 1 Electric Charge Chapter 16 Transfer of Electric Charge • Anelectrical conductoris a material in which charges can move freely. • Anelectrical insulatoris a material in which charges cannot move freely.

  11. Section 1 Electric Charge Chapter 16 Transfer of Electric Charge, continued • Insulators and conductors can be charged by contact. • Conductors can be charged byinduction. • Induction is a process of charging a conductor by bringing it near another charged object and grounding the conductor.

  12. Section 1 Electric Charge Chapter 16 Charging by Induction

  13. Section 1 Electric Charge Chapter 16 Transfer of Electric Charge, continued • A surface charge can be induced on insulators bypolarization. • With polarization, the charges within individual molecules are realigned such that the molecule has a slight charge separation.

  14. Section 2 Electric Force Chapter 16 Objectives • Calculateelectric force using Coulomb’s law. • Compareelectric force with gravitational force. • Applythe superposition principle to find the resultant force on a charge and to find the position at which the net force on a charge is zero.

  15. Section 2 Electric Force Chapter 16 Coulomb’s Law • Two charges near one another exert a force on one another called theelectric force. • Coulomb’s law states that the electric force is propor-tional to the magnitude of each charge and inversely proportional to the square of the distance between them.

  16. Section 2 Electric Force Chapter 16 Coulomb’s Law, continued • The resultant force on a charge is the vector sum of the individual forces on that charge. • Adding forces this way is an example of the principle of superposition. • When a body is in equilibrium, the net external force acting on that body is zero.

  17. Section 2 Electric Force Chapter 16 Superposition Principle

  18. Section 2 Electric Force Chapter 16 Sample Problem The Superposition Principle Consider three point charges at the corners of a triangle, as shown at right, where q1 = 6.00  10–9 C, q2 = –2.00  10–9 C, and q3 = 5.00  10–9 C. Find the magnitude and direction of the resultant force on q3.

  19. Section 2 Electric Force Chapter 16 Sample Problem, continued The Superposition Principle 1.Define the problem, and identify the known variables. Given: q1= +6.00  10–9 C r2,1 = 3.00 m q2 = –2.00 10–9 C r3,2 = 4.00 m q3 = +5.00 10–9 C r3,1= 5.00 m q = 37.0º Unknown:F3,tot= ? Diagram:

  20. Section 2 Electric Force Chapter 16 Sample Problem, continued The Superposition Principle Tip:According to the superposition principle, the resultant force on the charge q3 is the vector sum of the forces exerted by q1 and q2 on q3. First, find the force exerted on q3 by each, and then add these two forces together vectorially to get the resultant force on q3. 2. Determine the direction of the forces by analyzing the charges. The force F3,1 is repulsive because q1 and q3 have the same sign. The force F3,2 is attractive because q2 and q3 have opposite signs.

  21. Section 2 Electric Force Chapter 16 Sample Problem, continued The Superposition Principle 3. Calculate the magnitudes of the forces with Coulomb’s law.

  22. Section 2 Electric Force Chapter 16 Sample Problem, continued The Superposition Principle 4. Find the x and y components of each force. At this point, the direction each component must be taken into account. F3,1:Fx = (F3,1)(cos 37.0º) = (1.08  10–8 N)(cos 37.0º) Fx= 8.63 10–9 N Fy = (F3,1)(sin 37.0º) = (1.08  10–8 N)(sin 37.0º) Fy = 6.50 10–9 N F3,2: Fx= –F3,2 = –5.62  10–9 N Fy = 0 N

  23. Section 2 Electric Force Chapter 16 Sample Problem, continued The Superposition Principle 5. Calculate the magnitude of the total force acting in both directions. Fx,tot = 8.63  10–9 N – 5.62 10–9 N = 3.01  10–9 N Fy,tot = 6.50 10–9 N + 0 N = 6.50 10–9 N

  24. Section 2 Electric Force Chapter 16 Sample Problem, continued The Superposition Principle 6. Use the Pythagorean theorem to find the magni-tude of the resultant force.

  25. Section 2 Electric Force Chapter 16 Sample Problem, continued The Superposition Principle 7. Use a suitable trigonometric function to find the direction of the resultant force. In this case, you can use the inverse tangent function:

  26. Section 2 Electric Force Chapter 16 Coulomb’s Law, continued • The Coulomb force is a field force. • A field force is a force that is exerted by one object on another even though there is no physical contact between the two objects.

  27. Section 3 The Electric Field Chapter 16 Objectives • Calculateelectric field strength. • Draw and interpretelectric field lines. • Identifythe four properties associated with a conductor in electrostatic equilibrium.

  28. Section 3 The Electric Field Chapter 16 Electric Field Strength • Anelectric fieldis a region where an electric force on a test charge can be detected. • The SI units of the electric field, E, are newtons per coulomb (N/C). • The direction of the electric field vector, E,is in the direction of the electric force that would be exerted on a small positive test charge.

  29. Section 3 The Electric Field Chapter 16 Electric Fields and Test Charges

  30. Section 3 The Electric Field Chapter 16 Electric Field Strength, continued • Electric field strength depends on charge and distance. An electric field exists in the region around a charged object. • Electric Field Strength Due to a Point Charge

  31. Section 3 The Electric Field Chapter 16 Calculating Net Electric Field

  32. Section 3 The Electric Field Chapter 16 Sample Problem Electric Field Strength A charge q1 = +7.00 µC is at the origin, and a charge q2 = –5.00 µC is on the x-axis 0.300 m from the origin, as shown at right. Find the electric field strength at point P,which is on the y-axis 0.400 m from the origin.

  33. Section 3 The Electric Field Chapter 16 Sample Problem, continued Electric Field Strength 1.Define the problem,andidentifytheknownvariables. Given: q1= +7.00 µC = 7.00  10–6 C r1 = 0.400 m q2 = –5.00 µC = –5.00 10–6 C r2 = 0.500 m • = 53.1º Unknown: E at P (y = 0.400 m) Tip:Apply the principle of superposition. You must first calculate the electric field produced by each charge individually at point P and then add these fields together as vectors.

  34. Section 3 The Electric Field Chapter 16 Sample Problem, continued Electric Field Strength 2. Calculate the electric field strength produced by each charge. Because we are finding the magnitude of the electric field, we can neglect the sign of each charge.

  35. Section 3 The Electric Field Chapter 16 Sample Problem, continued Electric Field Strength 3. Analyze the signs of the charges. The field vector E1 at P due to q1 is directed vertically upward, as shown in the figure, because q1 is positive. Likewise, the field vector E2at P due to q2 is directed toward q2 because q2 is negative.

  36. Section 3 The Electric Field Chapter 16 Sample Problem, continued Electric Field Strength 4. Find the x and y components of each electric field vector. For E1:Ex,1 = 0 N/C Ey,1 = 3.93  105 N/C For E2:Ex,2= (1.80  105 N/C)(cos 53.1º) = 1.08 105 N/C Ey,1= (1.80  105 N/C)(sin 53.1º)= –1.44 105 N/C

  37. Section 3 The Electric Field Chapter 16 Sample Problem, continued Electric Field Strength 5. Calculate the total electric field strength in both directions. Ex,tot = Ex,1 + Ex,2= 0 N/C + 1.08  105 N/C = 1.08  105 N/C Ey,tot = Ey,1 + Ey,2= 3.93  105 N/C – 1.44  105 N/C = 2.49  105 N/C

  38. Section 3 The Electric Field Chapter 16 Sample Problem, continued Electric Field Strength 6. Use the Pythagorean theorem to find the magnitude of the resultant electric field strength vector.

  39. Section 3 The Electric Field Chapter 16 Sample Problem, continued Electric Field Strength 7. Use a suitable trigonometric function to find the direction of the resultant electric field strength vector. In this case, you can use the inverse tangent function:

  40. Section 3 The Electric Field Chapter 16 Sample Problem, continued Electric Field Strength 8. Evaluate your answer. The electric field at point P is pointing away from the charge q1, as expected, because q1 is a positive charge and is larger than the negative charge q2.

  41. Section 3 The Electric Field Chapter 16 Electric Field Lines • The number of electric field lines is proportional to the electric field strength. • Electric field lines are tangent to the electric field vector at any point.

  42. Section 3 The Electric Field Chapter 16 Rules for Drawing Electric Field Lines

  43. Section 3 The Electric Field Chapter 16 Rules for Sketching Fields Created by Several Charges

  44. Section 3 The Electric Field Chapter 16 Conductors in Electrostatic Equilibrium • The electric field is zero everywhere inside the conductor. • Any excess charge on an isolated conductor resides entirely on the conductor’s outer surface. • The electric field just outside a charged conductor is perpendicular to the conductor’s surface. • On an irregularly shaped conductor, charge tends to accumulate where the radius of curvature of the surface is smallest, that is, at sharp points.

  45. Chapter 16 Standardized Test Prep Multiple Choice 1. In which way is the electric force similar to the gravitational force? A. Electric force is proportional to the mass of the object. B. Electric force is similar in strength to gravitational force. C. Electric force is both attractive and repulsive. D. Electric force decreases in strength as the distance between the charges increases.

  46. Chapter 16 Standardized Test Prep Multiple Choice, continued 1. In which way is the electric force similar to the gravitational force? A. Electric force is proportional to the mass of the object. B. Electric force is similar in strength to gravitational force. C. Electric force is both attractive and repulsive. D. Electric force decreases in strength as the distance between the charges increases.

  47. Chapter 16 Standardized Test Prep Multiple Choice, continued 2. What must the charges be for A and B in the figure so that they produce the electric field lines shown? F. A and B must both be positive. G. A and B must both be negative. H. A must be negative, and B must be positive. J. A must be positive, and B must be negative.

  48. Chapter 16 Standardized Test Prep Multiple Choice, continued 2. What must the charges be for A and B in the figure so that they produce the electric field lines shown? F. A and B must both be positive. G. A and B must both be negative. H. A must be negative, and B must be positive. J. A must be positive, and B must be negative.

  49. Chapter 16 Standardized Test Prep Multiple Choice, continued 3. Which activity does not produce the same results as the other three? A. sliding over a plastic-covered automobile seat B. walking across a woolen carpet C. scraping food from a metal bowl with a metal spoon D. brushing dry hair with a plastic comb

  50. Chapter 16 Standardized Test Prep Multiple Choice, continued 3. Which activity does not produce the same results as the other three? A. sliding over a plastic-covered automobile seat B. walking across a woolen carpet C. scraping food from a metal bowl with a metal spoon D. brushing dry hair with a plastic comb

More Related