Fluka radioprotection calculations
Download
1 / 45

FLUKA radioprotection calculations - PowerPoint PPT Presentation


  • 108 Views
  • Uploaded on

FLUKA radioprotection calculations. Maria – Ana Popovici Politehnica University of Bucharest. Dose Legal Limits in Romania. NSR-01 Monitorul Oficial al Romaniei Partea I nr. 404 bis /29.08.2000 Fundamental Norms for Radiological Safety. Overview.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'FLUKA radioprotection calculations' - mira


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Fluka radioprotection calculations

FLUKA radioprotection calculations

Maria – Ana Popovici

Politehnica University of Bucharest


Dose legal limits in romania
Dose Legal Limits in Romania

NSR-01 Monitorul Oficial al Romaniei Partea I nr. 404 bis /29.08.2000

Fundamental Norms for Radiological Safety


Overview
Overview

  • FLUKA simulations of ELI-NP facility “hot spots” (from a radioprotection point of view) were performed for:

  • Gamma Source

    a) 600 MeV electron beam dump

    b) 19.5 MeV gamma beam dump

    (E7, E8 in the general layout)

  • 10 PW Laser

    (E1)



Fluka settings defaults precisio
FLUKA Settings – Defaults Precisio

  • EMF on

  • Rayleigh scattering and inelastic form factor corrections to Compton scattering activated

  • Detailed photoelectric edge treatment and fluorescence photons activated

  • Low energy neutron transport on down to thermal energies included, (high energy neutron threshold at 20 MeV)

  • Fully analogue absorption for low-energy neutrons

  • Particle transport threshold set at 100 keV

  • Multiple scattering threshold at minimum allowed energy, for both primary and secondary charged particles


Fluka settings
FLUKA Settings

  • Delta ray production on with threshold 100 keV

  • Heavy particle e+/e- pair production activated with full explicit production (with the minimum threshold = 2m_e)

  • Heavy particle bremsstrahlung activated with explicit photon production above 300 keV

  • Muon photonuclear interactions activated with explicit generation of secondaries

  • Heavy fragment transport activated


Materials fluka input
Materials (FLUKA input)

  • Normal concrete (walls)

  • Normal concrete, used at ELBE(FZD); density 2.6 g/cm3

  • Composition (mass fraction): HYDROGEN - 0.007; OXYGEN - 0.456; SILICON - 0.225; SODIUM - 0.014; MAGNESIU - 0.028; ALUMINUM - 0.055; IRON - 0.058; POTASSIU - 0.005; CALCIUM - 0.106; TITANIUM - 0.005; FLUORINE - 0.0026; SULFUR - 0.0015; PHOSPHO - 0.0004; CHLORINE - 0.0001

  • Heavy concrete (beamdumps)

  • MPQ Concrete; densiy 3.295 g/cm3

  • Composition (mass fraction): HYDROGEN – 0.01048482; BORON - 0.00943758 CARBON – 0.0129742; OXYGEN – 0.27953541; FLUORINE – 1.5175E-4; SODIUM - 3.7014E-4 ; MAGNESIU – 0.08298213; ALUMINUM – 0.02769028; SILICON – 0.06317253; PHOSPHO – 0.00176963; SULFUR – 5.8275E-4; POTASSIUM – 4.2024E-4; CALCIUM – 0.03227609; TITANIUM - 5.457E-5; MANGANES – 0.00321757; IRON – 0.47423935; STRONTIU - 6.4097E-4


Materials fluka input1
Materials (FLUKA input)

  • Stainless steel (electron pipeline, laser beamdump – as an alternative) AISI316LN; density 7.8 g/cm3

  • Composition (mass fraction): IRON – 0.67145; CHROMIUM - 0.185; NICKEL - 0.1125; MANGANES - 0.02; SILICON - 0.01; PHOSPHO - 4.5E-4; SULFUR - 3.E-4; CARBON - 3.E-4

  • Borated polyethylene (beamdump); density 0.94761 g/cm3

  • Composition (mass fraction): CARBON – 0.61192; HYDROGEN – 0.1153; OXYGEN – 0.22261; BORON-11 – 0.04107; BORON-10 – 0.0091

  • Wet air (air with moisture); density 0.00129 g/cm3

  • Composition (mass fraction): NITROGEN - 0.74379; OXYGEN - 0.24169; CARBON - 0.00012; ARGON - 0. 01263; HYDROGEN - 0.00177


Source terms fluka input
Source terms (FLUKA input)

Gamma Source ( ELI-NP White Book)

a) Electrons: 600 MeV electron beam, 250 pC/pulse, 12kHz, Div = 0.1 mrad, Gaussian, FWHM = 6 MeV

b) Photons: 19.5 MeV gamma beam, 8.0E+08 g/pulse, Div = 0.1 mrad, Gaussian, FWHM = 0.0195 MeV


Source terms fluka input1
Source terms (FLUKA input)

  • 10 PW Laser (I = 1.0E+22) - (ELI-PP White Book - draft) - 0.1 Hz, 300 J pulse-1

  • a) Photons

  • 3 thermal components with CUTOFF energy at 4 MeV, isotropic

  • T1 = 0.035 MeV, N1 = 1.1E+14 sr-1 pulse-1

  • T2 = 0.58 MeV, N2 = 1.0E+14 sr-1 pulse-1

  • T3 = 8.8 MeV, N3 = 9.0E+11 sr-1 pulse-1

  • b) Electrons

  • 38 GeV Gaussian beam, FWHM = 1MeV, CUTOFF energy at 38 GeV, N = 9.0E+13 sr-1 pulse-1, Div = 1o


Source terms fluka input2
Source terms (FLUKA input)

c1) Protons

1 thermal component with CUTOFF energy at 2 GeV, isotropic

T = 20 MeV, N = 1.0E+07 sr-1 pulse-1

c2) Protons

uniform energy distribution between 0 and 2 GeV, isotropic

T = 20 MeV, N = 1.0E+07 sr-1 MeV-1 pulse-1

10 PW Laser (I = 1.0E+23) – ELI-PP estimations concerning only protons

First estimation

1 thermal component with CUTOFF at 100 MeV, Div = 40o

T = 20 MeV, N = 5.0E+13 sr-1 pulse-1

Second estimation

uniform energy distribution between 0 and 100 MeV, Div = 40o

N = 5.0E+13 sr-1 MeV-1 pulse-1


Gamma source electron beamdump geometry
Gamma SourceElectron Beamdump - Geometry

  • Cave dimensions:

    19m x 5m x 11m

  • Lateral walls, roof, floor – thickness = 1m

    Exception: lateral wall for beamline admitance 1.5 m

  • Beamline: diameter = 2cm, 2mm thick, in AISI316LN, 1mm thick Al cap


Gamma source electron beamdump geometry1
Gamma SourceElectron Beamdump - Geometry

  • Beamdump: 6m x 4.5m x 8m in MPQ concrete (Martin Gross design)

  • Beamdump core: graphite (cone, diameter = 10cm, height = 50cm), Al (cylinder, diameter = 10cm, height = 30cm)


Gamma source electron beamdump fluka simulation
Gamma SourceElectron Beamdump – FLUKA Simulation


Gamma source electron beamdump fluka simulation1
Gamma SourceElectron Beamdump – FLUKA Simulation


Gamma source gamma cave beamdump geometry
Gamma SourceGamma cave + Beamdump Geometry

  • Cave E7: 8m x 5m x 8m

  • Cave E8: 8m x 5m x 5m

  • Walls – 1.5 m thick

  • Wall opposite to the admitance of the beamline is 2m thick


Gamma source gamma cave beamdump geometry1
Gamma SourceGamma cave + Beamdump Geometry

  • Beamdump dimensions: 3m x 3m x 4m

  • Beamdump in normal concrete

  • Central hole in beamdump: 30 cm diameter, 1m length

  • Beamline in stainless steel, diameter 2 cm, 2 mm thick walls, 1 mm thick exit cap in Al.


Gamma source gamma cave fluka simulation
Gamma SourceGamma cave – FLUKA Simulation


10 pw laser laser cave reaction chamber geometry
10 PW LaserLaser Cave & Reaction Chamber Geometry

  • Cave dimensions: 5m x 5m x 10m

  • Lateral walls, roof, floor – thickness = 1.5 m

  • Reaction chamber dimensions 1.3m x 1.5m x 2.85m

  • Wall thickness – 6 cm

  • Pipe: diameter = 40 cm, 2cm thick, 2 m length in Al, 2mm thick Al cap


10 pw laser first beamdump geometry materials
10 PW LaserFirst Beamdump Geometry & Materials

  • 3m x 3m x 7.5m MPQconcrete BD

  • 50 cm Bor_Poly inside cave

  • Lead core 1.3m x 1.3m x 3m

  • Central hole: 2m long cylinder (diameter = 15cm) + 50 cm height cone


10 pw laser second beamdump geometry materials
10 PW LaserSecond Beamdump Geometry & Materials

  • 3m x 3m x 7.5m AISI316LN stainless steel BD

  • 1m Bor_Poly inside cave

  • 1m Bor_Poly outside the external region of BD

  • Graphite core 1m long cylinder (diameter = 20cm) + 50 cm height cone

  • Central hole: 1m long cylinder (diameter = 20cm)


10 pw laser electrons fluka simulation
10 PW LaserElectrons – FLUKA Simulation


10 pw laser electrons fluka simulation1
10 PW LaserElectrons – FLUKA Simulation


10 pw laser electrons fluka simulation2
10 PW LaserElectrons – FLUKA Simulation


10 pw laser electrons fluka simulation3
10 PW LaserElectrons – FLUKA Simulation


10 pw laser photons fluka simulation
10 PW LaserPhotons – FLUKA Simulation


10 pw laser photons fluka simulation1
10 PW LaserPhotons – FLUKA Simulation


10 pw laser photons fluka simulation2
10 PW LaserPhotons – FLUKA Simulation


10 pw laser photons fluka simulation3
10 PW LaserPhotons – FLUKA Simulation


10 pw laser protons fluka simulation
10 PW LaserProtons – FLUKA Simulation


10 pw laser 1 0e 22 w cm 2
10 PW Laser - 1.0E+22 W cm-2

  • Protons

  • 1 thermal component with CUTOFF energy at 2 GeV, isotropic

  • T = 20 MeV, N = 1.0E+07 sr-1 pulse-1

  • Protons

  • uniform energy distribution between 0 and 2 GeV, isotropic

  • N = 1.0E+07 sr-1 MeV-1 pulse-1


10 pw laser 1 0e 22 w cm 2 protons thermal fluka simulation
10 PW Laser - 1.0E+22 W cm-2Protons (thermal) – FLUKA Simulation


10 pw laser 1 0e 22 w cm 2 protons uniform fluka simulation
10 PW Laser - 1.0E+22 W cm-2Protons (uniform) – FLUKA Simulation


10 pw laser 1 0e 22 w cm 2 protons uniform fluka simulation1
10 PW Laser - 1.0E+22 W cm-2Protons (uniform) – FLUKA Simulation


10 pw laser 1 0e 22 w cm 2 protons uniform fluka simulation2
10 PW Laser - 1.0E+22 W cm-2Protons (uniform) – FLUKA Simulation


10 pw laser 1 0e 22 w cm 2 protons uniform fluka simulation3
10 PW Laser - 1.0E+22 W cm-2Protons (uniform) – FLUKA Simulation


10 pw laser 1 0e 22 w cm 2 protons uniform fluka simulation4
10 PW Laser - 1.0E+22 W cm-2Protons (uniform) – FLUKA Simulation


Fluka radioprotection calculations

10 PW Laser - 1.0E+22 W cm-2 Protons (uniform) – FLUKA Simulation


10 pw laser 1 0e 23 w cm 2 protons thermal fluka simulation
10 PW Laser - 1.0E+23 W cm-2Protons (thermal) – FLUKA Simulation


10 pw laser 1 0e 23 w cm 2 eli pp estimations concerning only protons
10 PW Laser - 1.0E+23 W cm-2ELI-PP estimations concerning only protons

  • 1 thermal component with CUTOFF at 100 MeV, Div = 40o, T = 20 MeV, N = 5.0E+13 sr-1 pulse-1,

  • uniform energy distribution between 0 and 100 MeV, Div = 40o, N = 5.0E+13 sr-1 MeV-1 pulse-1


10 pw laser 1 0e 23 w cm 2 protons uniform fluka simulation
10 PW Laser - 1.0E+23 W cm-2Protons (uniform) – FLUKA Simulation


10 pw laser 1 0e 23 w cm 2 protons uniform fluka simulation1
10 PW Laser - 1.0E+23 W cm-2Protons (uniform) – FLUKA Simulation


10 pw laser 1 0e 23 w cm 2 protons uniform fluka simulation2
10 PW Laser - 1.0E+23 W cm-2Protons (uniform) – FLUKA Simulation


Conclusions
Conclusions

  • All the radiation sources at the ELI-NP facility are shieldable in the present simplified layout, even in an uninterrupted 0.1 Hz working regime.

  • An important exception: protons with a rectangular energy distribution. If this source term definition will prove to be valid, then a limitation of the number of shots per day will become necessary.

  • In order to avoid such unwanted limitations, more realistic source definitions would be very helpful.


Conclusions1
Conclusions

  • The present calculations are schematic and changes in these results are naturally expected once building and experimental setup details are taken into account.

  • Shielding calculations with FLUKA transport code can and need to be refined, but this requires the cooperation of members of the experimental groups, who need to provide detailed description of their setups. Also, the problem of the source term definition should find a realistic solution for each type of experiment which is to be performed.