1 / 65

Soutenance de thèse

Laboratoire Environnement, Géomécanique & Ouvrages. Soutenance de thèse  Transport, dépôt et relargage de particules inertielles dans une fracture à  rugosité périodique T. Nizkaya Directeur de thèse: M. Buès Co-directeur de thèse: J.-R. Angilella , LAEGO, Université de Lorraine

mikasi
Download Presentation

Soutenance de thèse

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Laboratoire Environnement, Géomécanique & Ouvrages Soutenance de thèse  Transport, dépôt et relargage de particules inertielles dans une fracture à rugosité périodique T. Nizkaya Directeur de thèse: M. Buès Co-directeur de thèse: J.-R. Angilella, LAEGO, Université de Lorraine Ecole doctorale RP2E 1er Octobre 2012 Nancy, Lorraine

  2. Particle-laden flows Photo: NASA's Goddard Space Flight Center Particles: air and water pollutants, dust, sprays and aerosols, etc…

  3. Particle-laden flows through fractures Hydrogeology: Flows through fractures often carry particles (sediments, organic debris etc.). How to model particle-laden flows?

  4. Two models of particles Tracer particles: point particles advected by the fluid (+ brownian motion) Inertial particles: finite size, density different from fluid. Example: sand in the air Example: dye in water

  5. Twomodels of particles Tracer particles: point particles advected by the fluid (+ brownian motion) Inertialparticles: finite size, density differentfromfluid. Advection-diffusion equations for particle concentration. Example: sand in the air

  6. Twomodels of particles Tracer particles: point particles advected by the fluid (+ brownian motion) Inertialparticles: finite size, density differentfromfluid. Particleinertiais important. Evenweakly-inertialparticles are Advection-diffusion equations for particle concentration. verydifferentfromtracers!

  7. Clustering of inertialparticles Inertialparticles tend to cluster in certain zones of the flow. rain initiation Wilkinson & Mehlig (2006) planet formation Barge & Sommeria (1995) aerosol engineering Fernandez de la Mora (1996) Particles in fractures: clusteringcan lead to redistribution of particlesacross the fracture?

  8. Clustering of inertialparticles Inertialparticles tend to cluster in certain zones of the flow. rain initiation Wilkinson & Mehlig (2006) planet formation Barge & Sommeria (1995) aerosol engineering Fernandez de la Mora (1996) Inperiodicflowsparticle focus to a single trajectory: Robinson (1955), Maxey&Corrsin (1986), etc.

  9. Goal of the thesis Theoreticalstudy of focusingeffect on particle transport in a fracture withperiodic corrugations. Water + particles 0 homogeneos distribution «focusing»

  10. Outline of the talk Single-phase flow in a model fracture Focusing of inertial particles in the fracture Influence of lift force on particle focusing Conclusion and perspectives

  11. I. Single-phase flow in a thin fracture.

  12. I. Single-phase flow in a thin fracture. Goal: Obtain an explicit fluid velocity field for arbitrary fracture shapes Method: Asymptotic expansions

  13. Simplified model of a fracture Z X Model fracture: a thin 2D channelwith «slow» corrugation. Typical corrugation lengthL0 >> typical aperture H0. Small parameter:

  14. Single-phase flow in fracture Single-phase flow in fracture: 2D, incompressible, stationary Navier-Stokes equations: Streamfunction: Non-dimensional variables: Reynolds number:

  15. Equations of inertial lubrication theory Navier-Stokes equations in non-dimensional variables: Boundary conditions: No slip at the walls Hasegawa and Izuchi (1983) Borisov (1982), etc.

  16. Equations of inertiallubricationtheory Navier-Stokes equations in non-dimensional variables Boundary conditions: No slipat the walls Small parameterεperturbativemethod

  17. Generalization of previousworks } Crosnier (2002) Hasegawa and Izuchi (1983) Presentthesis: full parametrization of the fracture geometry. Borisov (1982)

  18. The cross-channel variable: Cross-channel variable : half-aperture of the channel middle-line profile h(x) h(x)

  19. Asymptotic solution of 2ndorder 0th : 1st: 2nd:

  20. Asymptotic solution of 2ndorder 0th : 1st: 2nd: 3rd… etc. «local cubiclaw» inertial corrections viscous correction

  21. Numericalverification: mirror-symmetric --- LCL flow, 2ndorderasymptotics, numerical simulation

  22. Numericalverification: flat top wall --- LCL flow, 2ndorderasymptotics, numerical simulation

  23. Application: corrections to Darcy’slaw Flow rate depends on pressure drop: Q - curve Darcy’slaw Inertial corrections: analytical expression? Larger flow rates Small flow rates

  24. Corrections to Darcy’slaw Pressure drop (from 2ndorderasymptotic solution): No quadraticterm! In accordance withLo Jaconoet al. (2005) and manyothers.

  25. Corrections to Darcy’slaw Pressure drop (from 2ndorderasymptotic solution): Geometricalfactors:

  26. Corrections to Darcy’slaw Pressure drop (from 2ndorderasymptotic solution): Geometricalfactors: Slope of the linearlawdepends on both aperture and shape of the middle line.

  27. Corrections to Darcy’slaw Pressure drop (from 2ndorderasymptotic solution): Geometricalfactors: Cubic correction onlydepends on aperture variation.

  28. Numericalverification Pressure drop vs Reynolds number Darcy’slaw numerics (mirror-symmetricchannel) ourasymptotic solution numerics (channelwith flat top wall)

  29. II. Transport of particles in the periodic fracture

  30. Periodicchannel corrugation period «focusing» Particles: small, non-brownian, non-interacting, passive. Flow: asymptotic solution (leadingorder)

  31. Particle motion equations Particledynamics: from Stokes equations around the particle Maxey-Riley equations Gatignol (1983) Maxey and Riley (1983)

  32. Particle motion equations Maxey-Riley equations: fluid pressure gradient + gravity drag force added mass Basset’s memory term

  33. Typical long-time behaviors (numerics -LCL flow, no gravity) Heavy particles Light particles Q Q Heavy particlescan focus to a single trajectory (or not!) depending on channelgeometry. Q

  34. Typical long-time behaviors (numerics -LCL flow, withgravity) Light particles Heavy particles Low Q High Q Focusingpersists in presenceof gravity, if the flow rate Qis high enough (permanent suspension)

  35. Goal: Find conditions for particlefocusing depending on channelgeometry and flow rate. Method: Poincaré map + asymptotic motion equations for weakly-inertialparticles

  36. SimplifiedMaxey-Riley equations Particleresponse time: Densitycontrast:

  37. SimplifiedMaxey-Riley equations Particleresponse time: Densitycontrast: For weakly-inertialparticles: Maxey (1987) particleinertia + weight fluidvelocity fromMaxey-Riley equations

  38. Poincaré map for weakly-inertialparticles = rescaled cross-channel variable z after k periods fromsimplified Maxey-Riley equations )

  39. Poincaré map for weakly-inertialparticles Poincaré map: ) Stable fixed point: Particles converge to the streamline Focusing!

  40. Analytical expression for the Poincaré map Poincaré map for the LCL flow: Fluid/particle density ratio Channel geometry Gravitynumber heavier thanfluid lighter thanfluid

  41. Analytical expression for the Poincaré map Poincaré map for the LCL flow: Fluid/particle density ratio Channel geometry Gravitynumber heavier thanfluid lighter thanfluid Attractor position

  42. Focusing/sedimentationdiagram Rescaledgravity: (analytical expression) Corrugation asymmetry factor:

  43. Focusing/sedimentationdiagram Light particles Heavy particles A Case A:

  44. Focusing/sedimentationdiagram B Case B:

  45. Focusing/sedimentationdiagram C Case C:

  46. Focusing/sedimentationdiagram D Case D:

  47. Other applications of Poincaré map Using the Poincaré mapwecancalculate: • Percentage of depositedparticles • Maximal depositionlength • Focusing rate VerifiednumericallyOk

  48. Influence of channel geometry on transport properties

  49. Shape factors of the channel Aperture-weighted norm: Shape factors: «apparent» aperture aperture variation middle line corrugation differencebetween wall corrugations

  50. Single phase flow: geometry influence Pressure drop curve: Slope of the linearlaw: Shape factors: Inertial correction: Weakdependence on channelshape!

More Related