slide1 n.
Skip this Video
Loading SlideShow in 5 Seconds..
初期宇宙における 大質量星形成領域のプローブとしての遠赤外線電離酸素輝線 PowerPoint Presentation
Download Presentation
初期宇宙における 大質量星形成領域のプローブとしての遠赤外線電離酸素輝線

Loading in 2 Seconds...

  share
play fullscreen
1 / 30
Download Presentation

初期宇宙における 大質量星形成領域のプローブとしての遠赤外線電離酸素輝線 - PowerPoint PPT Presentation

miette
120 Views
Download Presentation

初期宇宙における 大質量星形成領域のプローブとしての遠赤外線電離酸素輝線

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. 初期宇宙における大質量星形成領域のプローブとしての遠赤外線電離酸素輝線初期宇宙における大質量星形成領域のプローブとしての遠赤外線電離酸素輝線 Hiroshi Matsuo (NAOJ) Akio Inoue (Osaka Sangyo Univ.)

  2. 1mm 500um 300um 200um Atmospheric Windows from Atacama(alt. 4800m) Matsushita, Matsuo et al. PASJ (1999)

  3. THz Cosmic Window

  4. High-z universe beyond redshift 8 To probe the period of Re-Ionization. Interstellar space should be already contaminated by heavy elements from Pop III. High UV field prevent formation of dust, hence low extinction. Massive stars are formed in clusters, nearby counter parts are R136 in 30Dor, LMC. SFG and GRB can trace massive star clusters.

  5. FIR SED of Starburst galaxies • OI, OIII • NII, NIII • CII Fischer et al. (1999)

  6. FIR atomic fine structure lines • OI • 63.185mm 4.745THz 5.0×105 cm-3 • 145.54mm 2.060THz 1.5×105 cm-3 • OIII 35.1eV • 51.815mm 5.786THz 3.4×103 cm-3 • 88.356mm 3.393THz 5.0×102 cm-3 • NII 14.5eV • 121.80mm 2.461THz 2.8×102 cm-3 • 205.30mm 1.460THz 4.5×101 cm-3 • NIII 29.6eV • 57.330mm 5.229THz 3×103 cm-3 • CII 11.3eV • 157.68mm 1.901THz 2.7×103 cm-3

  7. Carina Nebula by ISO LWS [CII] Mizutani, Onaka, Shibai. (2002)

  8. The Carina NebulaA very massive star-formingregion at 2.3 kpc [CII] 158 mm [NII] 122 mm [OIII] 88 mm from N. Smith 24’x12’ Hubble Image Matsuo et al. (2009)

  9. 30Dor region andR136 300 Mo stars • [OIII] 88mm is observed widely distributed around R136 • Contour: MIPS 24mm Kawada et al. (2011)

  10. Observation with ALMA • Primordial Massive Star-Forming Region • [OIII] 52um, 88um (ion potential 35 eV) • Probe of electron density and UV radiation • Z > 8 observation ofSFGs andGRBs • Site of Cosmic Re-ionization

  11. Example of [OIII] observationsin submillimeter-wave ~ 10 -18 W/m2 Ferkinhoff (2010)

  12. High-z Star-Forming Galaxies [CII] M82 [OI] [OIII] ALMA Bands 10 9 8 7 6 [OIII] [NeII] [SiIII] 10-17 z=0.1 Herschel z=0.2 10-18 z=0.5 Line Intensity W/m2 10-19 SPICA z=1 10-20 z=2 z=3 10-21 z=5 z=8 z=10 10 um 100 um 1 mm Wavelength

  13. [OIII] 88 mm line intensities • Single massive cluster • 1 ×10-5 W/m2/srfrom Carina • 10 arcmin in diameter @ 50 kpcfrom 30 Dor 7 × 10-11 W/m2 at z=10-5 2 × 10-22 W/m2 at z=8 1.7 mJy for 10 km/s @ 350 GHz angular diameter 10 milli-arcsec

  14. Band 7: 339-364 GHz → [OIII]88 @ z=8.3—9.0! • 感度は十分か? • [OIII]88/Hα相関 (Kawada+11) • Cloudy計算 で予想フラックスを推定 linear Kawada et al. 2011 ALMAで[OIII]88? ALMA時代の宇宙の構造形成理論研究会

  15. Kawada et al. 2011 • I_[OIII]88 / I_Hα ~2/3 • Hα / Hβ ~ 3 (Case B近似) • Cloudy (Ferland et al. 1998) • Z = 0.2 Zsun, log10(U) = -1.0, log10(n_H) = 0.0 • NOTE: nebula parameter dependence • Especially, metallicity [OIII]88フラックス予想 ALMA時代の宇宙の構造形成理論研究会

  16. z>8 candidates aredetected only in rest-UV. • [OIII] – UV relation is required. • Let us relate Hβ with UV: • SFR conversion laws (~100Myr constant SF): For Z=1/5Zsun (Inoue 2011) For Z=Zsun (Kennicutt 1998) Lower Z: larger UV—SFR factor Dust obscuration: smaller UV—SFR factor [OIII]88フラックス予想 ALMA時代の宇宙の構造形成理論研究会

  17. Kawada+11 obs. • Cloudy calculations • Hβ, UV – SFRrelation • Finally, we obtain [OIII]88フラックス予想 ALMA時代の宇宙の構造形成理論研究会

  18. 27.5—28.0 ABで ~1 mJy (100 km/s) [OIII]88フラックス予想 ALMA時代の宇宙の構造形成理論研究会

  19. Expected Brightness • Gravitational lensed sources • 25-26 mag at H160 • 10 mJyDv=100km/s • Limited redshift information • HUDF sources (Dec. -28deg) • 27-28 mag at H160 • 2 mJyDv=100km/s • Many candidates at z~8

  20. Redshift probability distributions

  21. Z=8.11 for [OIII] 88um Z=8.74

  22. UDF12によりUV slopeの測定精度が向上 • β~-2 • Z~Zsun, no dust OR Z~0.1—0.2 Zsun with Av~1mag (Dunlop et al. 2013) • 十分に酸素はあるはず Robertson et al. 2013 金属量は十分か? ALMA時代の宇宙の構造形成理論研究会

  23. 赤方偏移z>8.3を狙うため、Y105-J125 > 1.6を課し、Cycle1で観測条件の良い天体 • UDF092y-07580550 H160=27.1mag • Y105-J125 > 2.4 • CANDY-2350049216 H160=27.0mag • Y105-J125 > 2.3 • 残念ながら不採択 • Too risky! Cycle1ターゲット ALMA時代の宇宙の構造形成理論研究会

  24. BoRGやCANDELSにも<28AB天体が20個ほどある Schenker et al. 2013 ターゲット候補 ALMA時代の宇宙の構造形成理論研究会

  25. Ellis et al. 2013 ターゲット候補 ALMA時代の宇宙の構造形成理論研究会

  26. High-z universe beyond redshift 8 To probe the period of Re-Ionization. Interstellar space should be already contaminated by heavy elements from Pop III. High UV field prevent formation of dust, hence low extinction. Massive stars are formed in clusters, nearby counter parts are R136 in 30Dor, LMC. SFG and GRB can trace massive star clusters.

  27. 第一世代の星 Ly-? 宇宙背景放射観測の現状 • 宇宙赤外線背景放射(CIB)=観測値ー前景放射 • 前景放射: 太陽系(黄道光)、銀河系(星、星間ダスト放射) • 近赤外域には銀河の重ねあわせでは説明できない超過成分 黄道光(前景放射) 背景放射 CMB From S. Matsuura 系外銀河  の重ねあわせ (SUBARU, HST, Spitzer, BLAST) 28

  28. Carinae Nebula at 2.3 kpc