Exponential Quasi-interpolatory Subdivision Scheme - PowerPoint PPT Presentation

exponential quasi interpolatory subdivision scheme n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Exponential Quasi-interpolatory Subdivision Scheme PowerPoint Presentation
Download Presentation
Exponential Quasi-interpolatory Subdivision Scheme

play fullscreen
1 / 22
Exponential Quasi-interpolatory Subdivision Scheme
85 Views
Download Presentation
michi
Download Presentation

Exponential Quasi-interpolatory Subdivision Scheme

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Exponential Quasi-interpolatory Subdivision Scheme Yeon Ju Lee and Jungho Yoon Department of Mathematics, Ewha W. University Seoul, Korea

  2. Contents • Subdivision scheme – several type of s.s. • Quasi-interpolatory subdivision scheme • Construction • Smoothness & accuracy • Example • Exponential quasi-interpolatory subdivision scheme • Construction • Smoothness • Example

  3. Subdivision scheme • Useful method to construct smooth curves and surfaces in CAGD • The rule :

  4. Subdivision scheme • Rule : • Interpolatory s.s. & Non-interpolatory s.s • Stationary s.s. & Non-stationary s.s

  5. B-spline subdivision scheme • It has maximal smoothness Cm-1 with minimal support. • It has approximation order only 2 for all m. • Cubic-spline :

  6. Interpolatory subdivision scheme • 4-point interpolatory s.s. : • The Smoothness is C1 in some range ofw. • The Approximation order is 4 with w=1/16.

  7. Goal We want to construct a new scheme which has good smoothness and approximation order.

  8. Quasi-interpolatory subdivision scheme • Construction

  9. Quasi-interpolatory subdivision scheme • Advantage • L : odd (L+1,L+2)-scheme. So in even pts case, it has tension. • L : even (L+2,L+2)-scheme. It has tension in both case. • This scheme has good smoothness. • It has approximation order L+1.

  10. Quasi-interpolatory subdivision scheme • The mask set of cubic case In cubic case, the mask can reproduce polynomials up to degree 3. odd case : use 4-pts even case : use 5-pts with tension v

  11. Quasi-interpolatory subdivision scheme • Various basic limit function which start with d

  12. Quasi-interpolatory subdivision scheme

  13. Quasi-interpolatory subdivision scheme

  14. Quasi-interpolatory subdivision scheme • Comparison of schemes which use cubic

  15. Example

  16. Comparison with some example • Example < cubic-spline > < Sa > E=0.8169 E=0.1428

  17. Quasi-interpolatory subdivision scheme • General case

  18. Exponential quasi-interpolatory s.s. • Construction

  19. Analysis of non-stationary s.s.

  20. Exponential quasi-interpolatory s.s.

  21. Exponential quasi-interpolatory s.s. • Example E=7.7716e-016 E=0.1434

  22. Next Study