130 likes | 266 Views
This guide explores the concepts of central and inscribed angles in circles. A central angle is defined as an angle whose vertex is at the center of the circle, while an inscribed angle has its vertex on the circle and its sides contain chords. We provide examples illustrating these angles, such as calculating the measure of a central angle with a value of 85° and examining the relationships between inscribed angles and intercepted arcs. Improve your understanding of circle geometry concepts with clear explanations and examples.
E N D
C Properties of CirclesFoldable Circle C
An angle whose vertex is the center of a circle is a central angle of the circle.
mAB = mAPB mAB = 85 Example A 85° B
inscribed angle intercepted arc Tab 2
An inscribed angle is an angle whose vertex is on a circle and whose sides contain chords of the circle.
R S Q T mQTS = 2mQRS = 2 (90°) = 180° Example
Example 268°