1 / 1

Exploring the Six Trigonometric Functions and Their Identities in the Unit Circle

This guide provides a comprehensive overview of the six trigonometric functions as defined by angles on the unit circle, including specific values for key angles like 30°, 45°, 60°, 90°, and beyond. It covers fundamental identities, such as reciprocal identities, cofunction identities, and Pythagorean identities, along with power-reducing and angle-sum formulas. Through visual representation and algebraic formulas, this resource aims to enhance understanding of trigonometric concepts while facilitating problem-solving skills in trigonometry.

meris
Download Presentation

Exploring the Six Trigonometric Functions and Their Identities in the Unit Circle

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Definition of the Six Trigonometric Functions Unit Circle q 90o 120o 60o 135o 2p 11p 7p 5p 3p 5p 7p 5p 3p 4p 45o 3 3 2 4 6 6 4 3 4 6 150o 30o p 180o 0 0o y x r y r x 2p 360o y r x x y r 210o 330o 225o 315o 240o 300o 270o 2 3 3 2 2 3 2 2 2 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 p p p p 2 3 4 6 Power-Reducing Formulas 1 – cos 2u 1 + cos 2u sin2 u = cos2 u = 2 2 1 – cos 2u tan2 u = 1 + cos 2u Sum-to-Product Formulas sin u – sin v = 2 cos ( ) sin () sin u + sin v = 2 sin ( ) cos () u + v u – v u + v u – v 2 2 2 2 cos u + cos v = 2 cos ( ) cos () u + v u – v 2 2 p p p p p p – u – u – u – u – u – u cos u – cos v = – 2 sin ( ) sin () u + v u – v 2 2 2 2 2 2 2 2 Product-to-Sum Formulas sin u sin v = ½ [cos( u – v ) – cos( u + v )] cos u cos v = ½ [cos( u – v ) + cos( u + v )] sin u cos v = ½ [sin( u + v ) + sin( u – v )] cos u sin v = ½ [cos( u + v ) – sin( u – v )] sin( ) = cos( ) = u + 1 – cos u 2 – 2 u + 1 + cos u 2 – 2 tan ( ) = = u 1 – cos u sin u 2 sin u 1 + cos u Right triangle definitions, where 0 < q < p/2 (x,y) (cos u, sin u) (0,1) y opp.hyp. sin q =csc q = cos q =sec q = tan q = cot q = hyp. opp. (– , ) ( , ) Hypotenuse Opposite (– , ) ( , ) adj.hyp. hyp. adj. (– , ) ( , ) Adjacent opp.adj. adj. opp. (–1,0) (1,0) x Circular function definitions, where q is any angle. y r = x2 + y2 (– , – ) ( , – ) (x,y) sin q =csc q = cos q =sec q = tan q = cot q = r ( , – ) q (– , – ) y x x (– , – ) ( , – ) (0, –1) Reciprocal Identities Double Angle Formulas 1 1 1 sin u = cos u = tan u = csc u = sec u = cot u = sin 2u = 2 sin u cos u cos 2u = cos2 u – sin2 u = 2 cos2 u – 1 = 1 – 2 sin2 u csc u sec u cot u sin u cos u tan u 1 1 1 2 tan u tan 2u = 1 – tan2 u Quotient Identities Half-Angle Formulas sin u cos u tan u = cot u = cos u sin u Pythagorean Identities sin2 u + cos2 u = 1 The signs of sin(u/2) and cos(u/2) depend on the quadrant in which u/2 lies 1 + tan2 u = sec2 u 1 + cot2 u = csc2 u Cofunction Identities sin() = cos u cos() = sin u tan() = cot u cot() = tan u sec() = csc u csc() = sec u Even/Odd Identities sin(– u) = – sin u cot(– u) = – cot u cos(– u) = cos u sec(– u) = sec u tan (– u) = – tan u csc(– u) = – csc u Sum and Difference Formulas sin(u + v) = sin u cos v + cos u sin v sin(u – v) = sin u cos v – cos u sin v cos(u + v) = cos u cos v – sin u sin v cos(u – v) = cos u cos v + sin u sin v tan u + tan v tan(u + v) = 1 – tan u tan v tan u – tan v tan(u – v) = 1 – tan u tan v RVCC – ASC : RME 4-16-2007

More Related