how to use this presentation n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
How to Use This Presentation PowerPoint Presentation
Download Presentation
How to Use This Presentation

Loading in 2 Seconds...

play fullscreen
1 / 98

How to Use This Presentation - PowerPoint PPT Presentation


  • 121 Views
  • Uploaded on

How to Use This Presentation. To View the presentation as a slideshow with effects select “View” on the menu bar and click on “Slide Show.” To advance through the presentation, click the right-arrow key or the space bar.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

How to Use This Presentation


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
    Presentation Transcript
    1. How to Use This Presentation • To View the presentation as a slideshow with effects select “View” on the menu bar and click on “Slide Show.” • To advance through the presentation, click the right-arrow key or the space bar. • From the resources slide, click on any resource to see a presentation for that resource. • From the Chapter menu screen click on any lesson to go directly to that lesson’s presentation. • You may exit the slide show at any time by pressing the Esc key.

    2. Resources Chapter Presentation Visual Concepts Transparencies Standardized Test Prep Brain Food Video Quiz

    3. Chapter 3 Models of the Earth Table of Contents Section 1 Finding Locations on Earth Section 2 Mapping Earth’s Surface Section 3 Types of Maps

    4. Section 1 Finding Locations on Earth Chapter 3 Objectives • Distinguishbetween latitude and longitude. • Explainhow latitude and longitude can be used to locate places on Earth’s surface. • Explainhow a magnetic compass can be used to find directions on Earth’s surface.

    5. Section 1 Finding Locations on Earth Chapter 3 Latitude • The points at which Earth’s axis of rotation intersects Earth’s surface are used as reference points for defining direction. These points are the geographic North Pole and South Pole. • Halfway between the poles, a circle called the equator divides Earth into the North and Southern Hemispheres. • A reference grid that is made up of additional circles is used to locate places on Earth‘s surface.

    6. Section 1 Finding Locations on Earth Chapter 3 Latitude, continued • One set of circles describes positions north and south of the equator. These circles are known as parallels, and they express latitude. • parallel any circle that runs east and west around Earth and tat is parallel to the equator; a line of latitude • latitude the angular distance north or south from the equator; expressed in degrees

    7. Section 1 Finding Locations on Earth Chapter 3 Latitude, continued The diagram below shows Earth’s parallels.

    8. Section 1 Finding Locations on Earth Chapter 3 Latitude, continued Degrees of Latitude • Latitude is measured in degrees, and the equator is 0° latitude. The latitude of both the North Pole and the South Pole is 90°. • In actual distance, 1° latitude equals about 111 km. Minutes and Seconds • Each degree of latitude consists of 60 equal parts, called minutes. One minute (symbol: °) of latitude equals 1.85 km. • In turn, each minute is divided into 60 equal parts, called seconds (symbol: °).

    9. Section 1 Finding Locations on Earth Chapter 3 Longitude, continued • East-west locations are established by using meridians. • meridian any semicircle that runs north and south around Earth from the geographic North Pole to the geographic South Pole; a line of longitude • longitude the angular distance east or west from the prime meridian; expressed in degrees

    10. Section 1 Finding Locations on Earth Chapter 3 Longitude, continued The diagram below shows Earth’s meridians.

    11. Section 1 Finding Locations on Earth Chapter 3 Longitude, continued Degrees of Longitude • The meridian that passes through Greenwich, England is called the prime meridian. This meridian represents 0° longitude. • The meridian opposite the prime meridian, halfway around the world, is labeled 180°, and is called the International Date Line. Distance Between Meridians • The distance covered by a degree of longitude depends on where the degree is measured. The distance measured by a degree of longitude decreases as you move from the equator toward the poles.

    12. Section 1 Finding Locations on Earth Chapter 3 Comparing Latitude and Longitude

    13. Section 1 Finding Locations on Earth Chapter 3 Great Circles • A great circle is any circle that divides the globe into halves, or marks the circumference of the globe. • Any circle formed by two meridians of longitude that are directly across the globe from each other is a great circle. • The equator is the only line of latitude that is a great circle. • The route along a great circle is the shortest distance between two points on a sphere. As a result, great circles are commonly used in navigation, such as for air and sea routes.

    14. Section 1 Finding Locations on Earth Chapter 3 Great Circles, continued The diagram below shows what a great circle is.

    15. Section 1 Finding Locations on Earth Chapter 3 Great Circles, continued Reading Check Why is the equator the only parallel that is a great circle?

    16. Section 1 Finding Locations on Earth Chapter 3 Great Circles, continued Reading Check Why is the equator the only parallel that is a great circle? because the equator is the only parallel that divides Earth into halves

    17. Section 1 Finding Locations on Earth Chapter 3 Finding Direction • One way to find direction on Earth is to use a magnetic compass. • A magnetic compass can indicate direction because Earth has magnetic properties as if a powerful bar-shaped magnet were buried at Earth’s center at an angle to Earth’s axis of rotation. • The areas on Earth’s surface just above where the poles of the imaginary magnet would be are called the geomagnetic poles. • The geomagnetic poles and the geographic poles are located in different places.

    18. Section 1 Finding Locations on Earth Chapter 3 Finding Direction, continued Magnetic Declination • The angle between the direction of the geographic pole and the direction in which the compass needle points is called magnetic declination. • In the Northern Hemisphere, magnetic declination is measured in degrees east or west of the geographic North Pole. • Because Earth’s magnetic field is constantly changing, the magnetic declinations of locations around the globe also change constantly. • By using magnetic declination, a person can use a compass to determine geographic north for any place on Earth.

    19. Section 1 Finding Locations on Earth Chapter 3 Finding Direction, continued The diagram below shows the magnetic declination of the United States.

    20. Section 1 Finding Locations on Earth Chapter 3 Finding Direction, continued The Global Positioning System • Another way people can find their location on Earth is by using the global positioning system, or GPS. • GPS is a satellite navigation system that is based on a global network of 24 satellites that transmit radio signals to Earth’s surface. • A GPS receiver held by a person on the ground receives signals from three satellites to calculate the latitude, longitude, and altitude of the receiver on Earth.

    21. Section 2 Mapping Earth’s Surface Chapter 3 Objectives • Explaintwo ways that scientists get data to make maps. • Describethe characteristics and uses of three types of map projections. • Summarizehow to use keys, legends, and scales to read maps.

    22. Section 2 Mapping Earth’s Surface Chapter 3 How Scientists Make Maps • Because most globes are too small to show details of Earth’s surface, such as streams and highways, a great variety of maps have been developed for studying and displaying detailed information about Earth. • The science of making maps is called cartography. Scientists who make maps are called cartographers. • Cartographers use data from a variety of sources, such as from field surveys and remote sensing. • remote sensing the process of gathering and analyzing information about an object without physically being in touch with the object

    23. Section 2 Mapping Earth’s Surface Chapter 3 Map Projections • A map is a flat representation of Earth’s curved surface. • Transferring a curved surface to a flat map results in a distorted image of the curved surface. An area shown on a map may be distorted in size, shape, distance, or direction. • Over the years, cartographers have developed several ways to transfer the curved surface of Earth onto flat maps. These methods are called map projections. • map projection a flat map that represents a spherical surface • No map projection is entirely accurate, but each kind of projection has advantages and disadvantages.

    24. Section 2 Mapping Earth’s Surface Chapter 3 Map Projections, continued Cylindrical Projections • If you wrapped a cylinder of paper around a lighted globe and traced the outlines of continents, oceans, parallels, and meridians, a cylindrical projection would result. • A cylindrical projection is accurate near the equator but distorts distances and sizes near the poles. • One advantage to cylindrical projections is that parallels and meridians form a grid, which makes locating positions easier. • On a cylindrical projection, shapes of small areas are usually well preserved.

    25. Section 2 Mapping Earth’s Surface Chapter 3 Map Projections, continued The diagram below shows a cylindrical projection.

    26. Section 2 Mapping Earth’s Surface Chapter 3 Map Projections, continued Reading Check Why do meridians and parallels appear as a grid when shown on a cylindrical projection?

    27. Section 2 Mapping Earth’s Surface Chapter 3 Map Projections, continued Reading Check Why do meridians and parallels appear as a grid when shown on a cylindrical projection? Because both the parallels and the meridians are equally spaced straight lines on a cylindrical projection, the parallels and meridians form a grid.

    28. Section 2 Mapping Earth’s Surface Chapter 3 Map Projections, continued Azimuthal Projections • A projection made by placing a sheet of paper against a globe such that the paper touches the globe at only one point is called an azimuthal projection. • On an azimuthal projection, little distortion occurs at a the point of contact, but the unequal spacing between parallels causes a distortion in both direction and distance that increases as distance from the point of contact increases. • One advantage of azimuthal projections is that on these maps, great circles appear as straight lines. Thus, azimuthal projections are useful for plotting navigational paths.

    29. Section 2 Mapping Earth’s Surface Chapter 3 Map Projections, continued The diagram below shows an azimuthal projection.

    30. Section 2 Mapping Earth’s Surface Chapter 3 Map Projections, continued Conic Projections • A projection made by placing a paper cone over a lighted globe so that the axis of the cone aligns with the axis of the globe is known as a conic projection. • Areas near the parallel where the cone and the globe are in contact are distorted least. • A series of conic projections can be used to increase accuracy by mapping a number of neighboring areas and fitting the adjoining areas together to make a polyconic projection. • On a polyconic projection, the relative sizes and shapes of small areas on the map are nearly the same as those on the globe.

    31. Section 2 Mapping Earth’s Surface Chapter 3 Map Projections, continued The diagram below shows a conic projection.

    32. Section 2 Mapping Earth’s Surface Chapter 3 Reading a Map • Maps provide information through the use of symbols. Direction on a Map • Maps are commonly drawn with north at the top, east at the right, west at the left, and south at the bottom. • Some maps use parallels of latitude and meridians of longitude to indicate direction and location. • Many maps also include a compass rose, which is a symbol that indicates the cardinal directions (north, east, south, and west), or an arrow that indicates north.

    33. Section 2 Mapping Earth’s Surface Chapter 3 Reading a Map, continued Symbols • Symbols are commonly used on maps to represent features such as cities, highways, rivers, and other points of interest. • Symbols may resemble the features that they represent, or they may be more abstract. • Symbols are commonly explained in a legend. • legend a list of map symbols and their meanings

    34. Section 2 Mapping Earth’s Surface Chapter 3 Information on Maps

    35. Section 2 Mapping Earth’s Surface Chapter 3 Reading a Map, continued Map Scales • scale the relationship between the distance shown on a map and the actual distance • Map scales are commonly expressed as graphic scales, fractional scales, or verbal scales. • A graphic scale is a printed line that has markings that represent units of measure, such as meters or kilometers. • A fractional scale is a ratio that indicates how distance on Earth relates to distance on the map. • A verbal scale expresses scale in sentence form.

    36. Section 2 Mapping Earth’s Surface Chapter 3 Reading a Map, continued Reading Check Name three ways to express scale on a map.

    37. Section 2 Mapping Earth’s Surface Chapter 3 Reading a Map, continued Reading Check Name three ways to express scale on a map. by using a graphic scale, or a printed line divided into proportional parts that represent units of measure; a fractional scale, in which a ratio shows how distance on Earth relates to distance on a map; or a verbal scale, which expresses scale in sentence form

    38. Section 2 Mapping Earth’s Surface Chapter 3 Reading a Map, continued Isograms • isogram a line on a map that represents a constant or equal value of a given quantity • The second part of the word, -gram, can be changed to describe the measurement being graphed. For example, when the line connects points of equal temperature the line is called an isotherm. When the line connects points of equal atmospheric pressure, the line is called an isobar. • Isograms can be used to plot many types of data, such as atmospheric pressure, temperature, precipitation, gravity, magnetism, density, elevation, chemical composition, and many others.

    39. Chapter 3 Section 3 Types of Maps Objectives • Explainhow elevation and topography are shown on a map. • Describethree types of information shown in geologic maps. • Identifytwo uses of soil maps.

    40. Chapter 3 Section 3 Types of Maps Topographic Maps • One of the most widely used maps is called a topographic map, which shows the surface features of Earth. • topography the size and shape of the land surface features of a region • elevation the height of an object above sea level Advantages of Topographic Maps • Topographic maps provide more detailed information about the surface of Earth than either drawins or .

    41. Chapter 3 Section 3 Types of Maps Topographic Maps, continued Elevation on Topographic Maps • On topographic maps, elevation is shown by using contour lines. • contour line a line that connects points of equal elevation on a map • The difference in elevation between one contour line and the next is called the contour interval. The contour interval is selected based on the relief of the area being mapped. • relief the difference between the highest and lowest elevations in a given area • Every fifth contour line is darker than the four lines one either side of it. This index contour makes reading elevation easier.

    42. Chapter 3 Section 3 Types of Maps Topographic Maps, continued Landforms on Topographic Maps • The spacing and direction of contour lines indicate the shapes of the landforms represented on a topographic map. • Closely spaced contour lines indicate that the slope is steep. • Widely spaced contour lines indicate that the land is relatively level.

    43. Chapter 3 Section 3 Types of Maps Topographic Maps, continued Landforms on Topographic Maps, continued • A contour line that bends to form a V shape indicates a valley. The bend in the V points toward the higher end of the valley; this V points upstream, or in the direction from which the water flows, if there is a stream. • Contour lines that form closed loops indicate a hilltop or a depression. Closed loops that have short straight lines perpendicular to the inside of the loop indicate a depression.

    44. Chapter 3 Section 3 Types of Maps Topographic Maps, continued The diagram below shows how topographic maps represent landforms.

    45. Chapter 3 Section 3 Types of Maps Topographic Maps and Contour Lines

    46. Chapter 3 Section 3 Types of Maps Topographic Maps, continued Reading Check Why do V-shaped contour lines along a river point upstream?

    47. Chapter 3 Section 3 Types of Maps Topographic Maps, continued Reading Check Why do V-shaped contour lines along a river point upstream? Water moves from areas of higher elevation to areas of lower elevation. Because the V shape points toward higher elevation, it points upstream.

    48. Chapter 3 Section 3 Types of Maps Topographic Maps, continued Topographic Map Symbols • Symbols are used to show certain features on topographic maps. • Symbol color indicates the type of feature. Constructed features, such as buildings, are shown in black. Highways are shown in red. Bodies of water are colored blue, and forested areas are colored green. • Contour lines are brown or black.

    49. Chapter 3 Section 3 Types of Maps Index Contour, Contour Interval, and Relief

    50. Chapter 3 Section 3 Types of Maps Geologic Maps • Geologic maps are designed to show the distribution of geologic features, such as the types of rocks found an a given area and the locations of faults, folds, and other structures. Rock Units on Geologic Maps • On geologic maps, geologic units are distinguished by color. Units of similar ages are generally assigned colors in the same color family, such as different shades of blue. • In addition to assigning a color, geologists assign a set of letters to each rock unit. This set of letters symbolizes the age of the rock and the name of the unit or the type of rock.