slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Many Thanks to Organizers! PowerPoint Presentation
Download Presentation
Many Thanks to Organizers!

Loading in 2 Seconds...

play fullscreen
1 / 26

Many Thanks to Organizers! - PowerPoint PPT Presentation


  • 168 Views
  • Uploaded on

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Many Thanks to Organizers!' - melody


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

August 8, 2013Recent Results from the RHIC Beam Energy Scan Study emergent properties of matter with QCD degrees of freedomNu Xu(1) College of Physical Science & Technology, Central China Normal University, Wuhan, 430079, China (2) Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Many Thanks to Organizers!

outline
Outline

Introduction

- The QCD phase structure and STAR physics program

(2) Selected Recent Results

- RHIC Beam Energy Scan-I results

(3) Summary and Outlook

(4) CEE – CSR-External-Target-Facility Experiment

r elativistic h eavy i on c ollider brookhaven national laboratory bnl upton ny

PHOBOS

BRAHMS

RHIC

PHENIX

STAR

AGS

TANDEMS

Relativistic Heavy Ion ColliderBrookhaven National Laboratory (BNL), Upton, NY
  • - RHIC: High-energy
  • heavy-ion collider
  • (i) Dedicated QCD collider
  • (ii) √sNN= 200 - 5 GeV
  • (iii) U, Pb, Au, Cu, d, p
  • - RHIC: The highest energy
  • polarized proton collider
  • √s= 200, 500 GeV
  • eRHIC: The EIC (2025)
  • 5 - 30GeV e + 100, 255 GeV p
  • 5 - 30GeV e + 5 – 100GeV A

v = 0.99995c = 186,000 miles/sec

Au + Au at 200 GeV

Student Lecture, “Quark Matter 2006”, Shanghai, Nov. 14 - 20, 2006

Animation M. Lisa

slide4

STAR Experiment

Magnet

MTD

BEMC

TPC

TOF

BBC

EEMC

HFT

FGT

HLT

particle identification at star
Particle Identification at STAR

TPC TOF TPC

TPC

K pd

π

e, μ

TOF

Log10(p)

Charged hadrons

Hyperons & Hyper-nuclei

MTD

HFT

Jets

EMC

Neutral particles

Jets & Correlations

High pTmuons

Heavy-flavor hadrons

Large, homogenous, collision energy independent acceptance

Multiple-fold correlations for the identified particles!

slide6

QCD Phase Structure

TE

RHIC, SPS

2

Large μB

FAIR, CSR

Tini, TC

LHC, RHIC

3

1

LHC+RHIC

sQGP properties

√sNN ~ 0.1 - 5 TeV

Future eRHIC

Cold nuclear matter properties

e + ion collisions

1

2

3

Emergent properties of QCD matter

phase diagram
Phase Diagram

Phase diagram: A map showsthat, at given degrees offreedom, how matterorganizeitself under externalconditions.

Water: H2O

The QCDPhase Diagram:

structure of matter with quark-

and gluon-degrees (color

degrees) of freedom.

beam energy scan at rhic
Beam Energy Scan at RHIC

Study QCD Phase Structure

- Signals for onset of sQGP

- Signals for phase boundary

- Signals for critical point

Observables:

1st order phase transition

(1) Azimuthally HBT

(2) Directed flow v1

Partonic vs. hadronic dof

(3) RAA: N.M.F.

(4) Dynamical correlations

(5) v2 - NCQ scaling

Critical point, correl. length

(6) Fluctuations

(7) Di-lepton production

- http://drupal.star.bnl.gov/STAR/starnotes

/public/sn0493; arXiv:1007.2613

BES-I: √sNN = 7.7, 11.5, 19.6, 27, 39GeV

star hadron spectra
STAR Hadron Spectra

√sNN = 39 GeV Au+Au Collisions

p+

STAR Preliminary

K0s

K+

p

L

X-

W-

1 bulk properties at freeze out
(1) Bulk Properties at Freeze-out

Cleymans, Redlich

  • Kinetic Freeze-out:
  • Central collisions => lower value of
  • Tkinand larger collectivity β
  • Stronger collectivity at higher energy
  • STAR: S. Das, L. Kumar, QM2012

Chemical Freeze-out: (GCE)

- Central collisions => higher values of

Tch and μB!

- The effect is stronger at lower energy.

2 v 1 directed flow
(2) v1: Directed Flow

B. Schaefer et al., Phys. Rev. D75, (2007) 085015

(1) Lattice QCD calculations predict a first order phase transition seen, as a discontinuity in the density

(2) Slope of v1: manifestation of early pressure in the system

(3) Soft point?

3 bes dependence of r aa
(3) BES Dependence of RAA

Suppression of high pT hadrons is one of the key signatures for the formation of strongly interaction Quark-Gluon Plasma in high-energy nuclear collisions

The suppression was not observed in low energy Au+Au collisions, especially for √sNN ≤ 11.5GeV

4 search for local parity violation in high energy nuclear collisions

L or B

(4) Search for Local Parity Violation in High Energy Nuclear Collisions

The separation between the same-charge and opposite-charge correlations.

- Strong external EM field

- De-confinement and Chiral

symmetry restoration

AAA AA

  • Parity-even observable, assumptions must be tested
  • Energy dependence & UU collisions
  • - S. Voloshin, PRC62, 044901(00).

- STAR: PR103, 251601; PRC81, 054908(2009)

dynamical correlations
Dynamical Correlations

STAR Preliminary

SS - OS

Below √sNN= 11.5 GeV, the splitting between the same- and opposite-sign charge pairs (SS-OS) disappear

If QGP is the source for the observed splitting at high-energy nuclear collisions  hadronic interactions become dominant at √sNN ≤ 11.5 GeV

5 ncq scaling in v 2

(5) NCQ Scaling in v2

  • m ~ mp ~ 1 GeV
  • ssφnot K+K-φ
  • h<< p, 
  • In the hadronic case, no number
  • of quark scaling and the value of
  • v2ofφ will be small.
  • * Thermalization is assumed!
collectivity v 2 measurements
Collectivity v2 Measurements

STAR: Phys. Rev. Lett. 110 (2013) 142301

Number of constituent quark (NCQ) scaling in v2 => partonic collectivity => deconfinement in high-energy nuclear collisions

At √sNN< 11.5 GeV, the v2 NCQ scaling is broken indicating hadronic interactions become dominant.

slide17

RHIC BES-I Highlights

(1) Parton energy loss

(2) “Local Parity Violation”

(3) Partonic collectivity

STAR Preliminary

sQGP key signatures

turned off at √sNN < 11.5 GeV!

6 higher moments
(6) Higher Moments

1) High moments for conserved quantum numbers: Q, S, B, in high-energy nuclear collisions

2) Sensitive to critical point (ξ correlation length):

3) Direct comparison with Lattice results:

Extract susceptibilities and freeze-out temperature. An independent/important test on thermal equilibrium in heavy ion collisions.

References:

- A. Bazavov et al. 1208.1220 (NLOTE) // STAR:PRL105, 22303(2010) // M. Stephanov: PRL102, 032301(2009) // R.V. Gavai and S. Gupta, PLB696, 459(2011) // S. Gupta, et al., Science, 332, 1525(2011) // F. Karsch et al, PLB695, 136(2011) // S.Ejirietal, PLB633, 275(06) // M. Cheng et al, PRD79, 074505(2009) // Y. Hatta, et al, PRL91, 102003(2003)

slide19

Net-proton Higher Moments

BES-II

RHIC

BES-I

STAR net-proton results:

All data show deviations below Poisson beyond statistical and systematic errors in the 0-5% most central collisions for κσ2 and Sσ at all energies. Larger deviation at √sNN ~ 20GeV.

UrQMD model show monotonic behavior in the moment products.

Higher statistics needed for collisions at √sNN< 20 GeV.

- STAR: X.F. Luo, QM2012

STAR Preliminary

slide20

Summary

RHIC BES-I Results:

- Partonic QGP dominant: √sNN >39GeV

Hadronic interactions become dominant: √sNN ≤11.5GeV

BES-II:

- High statistics data for energy region √sNN ≤ 20GeV.

The e-cooling at RHIC has started.

RHIC:Unique opportunities for exploring

QCD phase structure

slide21

Exploring the QCD Phase Structure

TE

RHIC, SPS

2

Large μB

FAIR, CSR

Tini, TC

LHC, RHIC

3

1

LHC+RHIC

sQGP properties

√sNN ~ 0.1 - 5 TeV

Future eRHIC

Cold nuclear matter properties

e + ion collisions

1

2

3

Partonic Matter

Hadronic

Matter

RHIC BES-II

QCD phase structure and critical point

√sNN ≤ 20 GeV

Emergent properties of QCD matter

star upgrade plan 2025
STAR: Upgrade Plan ( - 2025)

- HF-II: B, ΛC

- Jet, gamma

CNM, spin

  • HF-I: Charm
  • Di-lepton
  • sQGP properties

- QCD phase structure

- Critical Point

- CNM, CGC

- Phase structure with glue

HF, (e,μ)

BESII

HF’, pA

HFT/MTD

eSTAR

e-Cooling, iTPC

HFT’, Tracking, EM/HCAL (West side)

EMCAL (East side)

physics

upgrade

slide23

高能核核碰撞中的QCD相结构示意图

TE

RHIC, SPS

2

Large μB

FAIR, CSR

Tini, TC

LHC, RHIC

3

1

CEE 兰州重离子加速器

低温高密核物质测量谱仪

低温、高重子密度

强子相互作用

手征对称自发破缺

对称能Esym()

1

2

3

早期宇宙

发展演化

Partonic Matter

Hadronic

Matter

Quarkyonic matter?

部分子物质

(QGP)

强关联的核物质

重子化学势

强子物质

CEE – CSR-External-Target-Facility Experiment

slide24

N

SFC:  10 AMeV (H.I.), 17~35 MeV (p)

SSC: 100 AMeV (H.I.), 110 MeV (p)

CSRm: 1000 AMeV (H.I.), 2.8 GeV (p)

SSC

SFC

CSRe

RIBLL2

RIBLL1

CSRm

RIBLL1: 几十AMeV RIBs

RIBLL2: 百AMeVRIBs

CSRm: 冷却储存环

HIRFL-CSR 重离子加速器

外靶实验

装置(CEE)

slide25

CEE 概念性设计

二极磁铁

飞行时间探测器

多丝漂移室

  • 微像素
  • 定位探测器

零度角量能器

重离子束

T0探测器

时间投影室

  • 内飞行时间探测器

低温高密核物质测量谱仪(CEE)

  • 技术亮点: 1) 硅像素定位探测器 (华中师范大学)
  • 2) 高计数率高精度飞行时间探测器 (清华大学、中国科学技术大学)
  • 3) 高精度三维径迹探测器TPC (中科院上海应用物理所)
  • 4) 新型数据获取系统(中国科学技术大学)
slide26
(CEE) 总结

利用当前最新技术在中国大型重离子加速器HIRFL-CSR(HIAF)上建设性能先进的多功能中高能重离子物理实验谱仪:

-三年完成基本实验设备建设

-高重子密度下的QCD相结构, 对称能高密行为, …

2)在中高能核物理领域建立一支由高校-中科院研究所密切结合的优秀科研团队

3)为国家中长期高能核物理规划, 核探测技术发展及其应用做贡献

哈尔宾工业大学,华中师范大学,山东大学,清华大学,中国科学技术大学,

中国科学院近代物理所,中国科学院上海应用物理所