750 likes | 1.18k Views
除了平面圖形以外,像下列這些在生活中常見物體的形狀都是立體圖形。. 如果將一個立體圖形拆開,讓它的每一個面都在同一平面上,此時所形成的圖形就是這個立體圖形的 展開圖 。 以下我們來討論常見的立體圖形及其展開圖。. 小學時曾學過,長方體有 8 個頂點、 12 條邊、 6 個面,它是由三組兩兩全等的長方形拼成,而全等的兩個長方形恰好都是長方體中相對的面。由於每一個面都是長方形,所以長方體相鄰的兩邊都互相垂直。. 若想更進一步了解長方體的組合情形,我們可以沿著一些邊剪開成為展開圖,如下圖所示。.
E N D
除了平面圖形以外,像下列這些在生活中常見物體的形狀都是立體圖形。除了平面圖形以外,像下列這些在生活中常見物體的形狀都是立體圖形。 如果將一個立體圖形拆開,讓它的每一個面都在同一平面上,此時所形成的圖形就是這個立體圖形的展開圖。 以下我們來討論常見的立體圖形及其展開圖。
小學時曾學過,長方體有 8 個頂點、12 條邊、6 個面,它是由三組兩兩全等的長方形拼成,而全等的兩個長方形恰好都是長方體中相對的面。由於每一個面都是長方形,所以長方體相鄰的兩邊都互相垂直。
若想更進一步了解長方體的組合情形,我們可以沿著一些邊剪開成為展開圖,如下圖所示。若想更進一步了解長方體的組合情形,我們可以沿著一些邊剪開成為展開圖,如下圖所示。
藉由展開圖,比較容易看出立體圖形如何由平面圖形組合而成,例如從長方體的展開圖中,我們就很容易看出長方體的表面積就是 6 個面的面積之和。 • 如果組成長方體的 6 個面是全等的正方形,我們便稱它為正方體,它的展開圖如下圖所示。
判斷下列圖形哪些不是正方體的展開圖。 ⑴、⑷不是正方體的展開圖。
從隨堂練習我們可以發現正方體的展開圖不只一種,事實上,立體圖形的展開圖都有很多不同的展開方式。從隨堂練習我們可以發現正方體的展開圖不只一種,事實上,立體圖形的展開圖都有很多不同的展開方式。
在平面上,我們可以利用量角器和三角板等工具來測量直角,檢驗兩直線是否垂直;我們也可以利用有兩個面互相垂直的形體來測量另外的兩個平面是否互相垂直。例如我們可利用如右圖的正方體來測量兩個平面是否垂直。如果貼著的部分是密合的,我們就說這兩個面互相垂直,如果貼著的部分有空隙,我們就說這兩個面不垂直,如下圖所示:在平面上,我們可以利用量角器和三角板等工具來測量直角,檢驗兩直線是否垂直;我們也可以利用有兩個面互相垂直的形體來測量另外的兩個平面是否互相垂直。例如我們可利用如右圖的正方體來測量兩個平面是否垂直。如果貼著的部分是密合的,我們就說這兩個面互相垂直,如果貼著的部分有空隙,我們就說這兩個面不垂直,如下圖所示:
我們同樣可用正方體來測量直線與平面是否垂直。其方法是將正方體放在此平面上,如果直線 AB 能像圖㈠這樣和正方體的一個邊重疊,我們就說直線AB 和平面垂直;如果像圖㈡這樣,正方體的一個邊和直線 AB 無法重疊,我們就說直線 AB 和平面不垂直。
角柱是由上下兩個全等的多邊形底面和一些長方形或平行四邊形的側面所組成,如果它的兩個底都是 n 邊形,我們就把它稱為 n 角柱,這時它有 n 個側面,如圖㈢和圖㈣所示。
圖㈢的角柱,每個側面都和底面垂直,稱為直角柱,直角柱的每個側面都是長方形。圖㈣的角柱,側面與底面不垂直,稱為斜角柱,國中階段我們只討論直角柱。如果角柱的上下兩個底都是正多邊形,我們就稱它為正角柱。角柱兩個底面之間的距離稱為角柱的高,簡稱為高,而底面的面積簡稱為底面積。圖㈢的角柱,每個側面都和底面垂直,稱為直角柱,直角柱的每個側面都是長方形。圖㈣的角柱,側面與底面不垂直,稱為斜角柱,國中階段我們只討論直角柱。如果角柱的上下兩個底都是正多邊形,我們就稱它為正角柱。角柱兩個底面之間的距離稱為角柱的高,簡稱為高,而底面的面積簡稱為底面積。
長方體是四角柱的一種,前面我們曾將長方體沿側邊剪開,將側面並排,做出長方體的展開圖。我們也可以用相同的方法做出其他直角柱的展開圖。如下頁圖㈤即為三角柱和五角柱的展開圖。長方體是四角柱的一種,前面我們曾將長方體沿側邊剪開,將側面並排,做出長方體的展開圖。我們也可以用相同的方法做出其他直角柱的展開圖。如下頁圖㈤即為三角柱和五角柱的展開圖。
2. n 角柱的兩個底是兩個全等的 n 邊形,側面是由 n 個 • 長方形組成,則: • ⑴ 這個 n 角柱共有幾個面? • ⑵ 這個 n 角柱共有幾個頂點? • ⑶ 這個 n 角柱共有幾個邊? n+2 2n 3n
我們知道長方體的體積=長×寬×高,如右圖,這個長方體的體積是 4×3×5=60 (cm3)。如果將「長×寬」看作是長方體的底面積,這時我們就會得到:長方體體積=底面積×高。 • 至於其他角柱的體積,要如何計算呢?我們來看看以下的問題探索。
將原來底面為平行四邊形的角柱切割並拼成長方體,如下圖。將原來底面為平行四邊形的角柱切割並拼成長方體,如下圖。
比較圖㈥和圖㈧,兩個角柱的底面積、高是否相等?比較圖㈥和圖㈧,兩個角柱的底面積、高是否相等? • 2. 比較圖㈥和圖㈧,兩個角柱的體積是否相等? • 3. 如何計算底面為平行四邊形的角柱體積?說說你的看法。 是。 是。 平行四邊形的角柱體積=長方體體積=底面積×高。
4. 如果我們將兩個相同的三角柱,拼成一個底面為平行 • 四邊形的角柱,如圖㈨。三角柱的體積可寫成「底面 • 積×高」嗎?說說你的看法。 可以。
5. 對於任意四角柱、五角柱、六角柱我們可以將它們切 • 割成一些三角柱,如圖㈩。它們的體積也可寫成「底 • 面積×高」嗎?說說你的看法。 可以。
由上面的問題探索 1 中,我們知道底面為平行四邊形的角柱,可以經由切割之後拼成一個長方體,所以底面為平行四邊形的角柱,它的體積計算方式一樣為底面積×高。事實上,其他角柱的體積也是相同的算法,也就是,角柱的體積為底面積×高。 • 由展開圖可知角柱的表面積=側面的面積和+底面積和。
右圖是一個底面為平行四邊形的角柱, • 如果平行四邊形的高為 6 公分,兩相 • 鄰邊長各為 10 公分、8 公分,且角柱 • 的高為 4 公分,那麼這個角柱的體積 • 是多少立方公分?表面積是多少平方 • 公分? 角柱體積=底面積×高=(6×10)×4=240 (立方公分), 角柱的表面積 =側面的面積和+底面積和 =(4×10+4×8+6×10)×2 =264 (平方公分)。
右圖的巧克力盒是一個底面為等腰三角形的三角柱,如果等腰三角形的面積為 12 平方公分,腰為 5 公分,底為 8 公分,且盒子的高為 12 公分,那麼這個巧克力盒的體積是多少立方公分?表面積是多少平方公分? 三角柱體積=底面積×高=12×12=144 (立方公分)。 三角柱表面積 =側面的面積和+底面積和 =(5+5+8)×12+12×2=216+24=240 (平方公分)。
和討論角柱一樣,國中階段我們只討論直圓柱。直圓柱可視為由兩個全等的圓形底面,和一個可以展開成長方形的側面所組成,且兩個底圓的圓心連線與底面垂直。此展開圖中長方形的長為圓形底面的周長,寬為圓柱的高,展開圖如下所示:和討論角柱一樣,國中階段我們只討論直圓柱。直圓柱可視為由兩個全等的圓形底面,和一個可以展開成長方形的側面所組成,且兩個底圓的圓心連線與底面垂直。此展開圖中長方形的長為圓形底面的周長,寬為圓柱的高,展開圖如下所示:
下面各圖形中,上、下兩圓的半徑都是 1,(A)、(B)、(C)展開圖的中間都是長方形,D展開圖的中間是平行四邊形,判斷下列圖形哪些不是圓柱的展開圖。 因為圓形底面的周長=2×1×π=2π, 所以(B)、(C)不是圓柱的展開圖。
前面學過角柱體積=底面積×高,圓柱的情況又如何呢?我們來看看下面的問題探索。前面學過角柱體積=底面積×高,圓柱的情況又如何呢?我們來看看下面的問題探索。
將圓柱切割成 8 等分、16 等分和 32 等分,再重新組合排列,如下圖:
比較圓柱與重新排列組合後所得到的立體圖形,兩者的底面積相同嗎?高相同嗎?比較圓柱與重新排列組合後所得到的立體圖形,兩者的底面積相同嗎?高相同嗎? • 2. 圓柱切割得越細,重新組合排列成的立體圖形就越接近哪一種柱體?這時,如何求出這個拼成的立體圖形體積? • 3. 如何求得圓柱的體積?說說你的看法。 相同。相同。 長方體。長方體體積=底面積×高。 圓柱的體積=長方體體積=底面積×高。
由以上的問題探索,可以推得:圓柱體體積=底面積×高。綜合角柱與圓柱的體積求法,我們可以推得柱體的體積公式:柱體體積=底面積×高。由前由以上的問題探索,可以推得:圓柱體體積=底面積×高。綜合角柱與圓柱的體積求法,我們可以推得柱體的體積公式:柱體體積=底面積×高。由前 • 一頁圓柱體的展開圖可知,圓柱的表面積=底面圓周長×高+兩底圓面積和。
如果有一個柱體,底面為不規則形狀,那麼你認為它的體積仍然是底面積乘以高嗎?如果有一個柱體,底面為不規則形狀,那麼你認為它的體積仍然是底面積乘以高嗎? 是。
底面的半徑為 2 公分,高為 8 公分的 • 圓柱體,體積是多少立方公分?表面 • 積是多少平方公分? 圓柱體底面積=半徑×半徑×π=2×2×π=4π(平方公分), 圓柱體體積=底面積×高=4π×8=32π(立方公分), 圓柱體表面積 =底面圓周長×高+兩底圓面積和 =2×2×π×8+2×4π=40π(平方公分)。
右圖是由兩個圓柱體鑄成的模型,它的體積是多少立方公尺?表面積是多少平方公尺?右圖是由兩個圓柱體鑄成的模型,它的體積是多少立方公尺?表面積是多少平方公尺? • (提示:重疊的部分,面積不計。) ⑴ 2÷2=1,1÷2=0.5, (1×1×π)×1.8+(0.5×0.5×π)×1 =1.8π+0.25π =2.05π(立方公尺)。 ⑵ (1×1×π)×2=2π, (2×1×π)×1.8=3.6π, (2×0.5×π)×1=π, 2π+3.6π+π=6.6π(平方公尺)。
如圖,有一個無蓋的圓柱形容器,外圍 • 直徑為 22 公分,內圈直徑為 20 公分, • 且外壁高 10 公分,內壁高 8公分,求此 • 圓柱形容器本身的體積是多少立方公分? • 表面積是多少平方公分?
大半徑=22÷2=11 (公分), • 小半徑=20÷2=10 (公分), • 圓柱形容器本身的體積 • =最大圓柱體體積-空心部分體積 • =(11×11×π)×10-(10×10×π)×8 • =1210π-800π • =410π(立方公分)。 • 觀察圖形可知: • 容器上緣環形區域面積+內部底面積=外部底面積, • 圓柱形容器的表面積 • =外部側面面積+內部側面面積+外部底面積×2 • =22×π×10+20×π×8+2×112×π • =622π(平方公分)。
右圖是一個圓柱形的木製筆筒,阿信用尺量得外圍直徑為10 公分,內圈直徑為 8 公分,且外側的高為 12 公分,內側的高為 11 公分。求這個筆筒本身的體積為多少立方公分?表面積為多少平方公分? 外圍半徑=10÷2=5,內圈半徑=8÷2=4, 體積 =(5×5×π)×12-(4×4×π)×11=300π-176π =124π(立方公分)。 表面積 =10×π×12+8×π×11+(5×5×π)×2 =120π+88π+50π=258π(平方公分)。
角錐是由一個多邊形底面和一些三角形的側面所組成,如果它的底面是 n邊形,我們就稱之為 n 角錐,這時它有 n 個側面,如圖 和圖 所示。
圖 的角錐底面是正多邊形,且側面都是互相全等的等腰三角形,稱為正角錐。圖 的角錐稱為斜角錐,國中階段我們只討論正角錐。
對於角柱,我們曾沿著側邊剪開,將側面並排,然後把上、下底面分別接在上、下方的任何一邊上,做角柱的展開圖。對於角錐,我們不妨把它想像成一個透明的帳篷,如果從上面的頂點打開它,就可以得到它的展開圖,如下圖所示。對於角柱,我們曾沿著側邊剪開,將側面並排,然後把上、下底面分別接在上、下方的任何一邊上,做角柱的展開圖。對於角錐,我們不妨把它想像成一個透明的帳篷,如果從上面的頂點打開它,就可以得到它的展開圖,如下圖所示。
觀察這些角錐的展開圖,我們不難發現 • 角錐的表面積=側面(等腰三角形)的面積和+底面積。
正四角錐的底面積=10×10=100 (平方公分), 正四角錐的側面積= ( ×10×12)×4=240 (平方公分), 所以正四角錐的表面積=100+240=340 (平方公分)。 • 如圖,正四角錐的底面是邊長為 10 公分 • 的正方形,側面等腰三角形的高為 12 公 • 分,求此正四角錐的表面積。
正三角形的面積= ×2× = (平方公分), 正四面體的表面積=4× = (平方公分)。 • 四個面都是正三角形的三角錐,一般稱它為正四面體,如右圖。已知每一個正三角形的邊長為 2 公分,且高為 公分,求此正四面體的表面積。
圓錐是由一個圓形底面和一個側面所組成,我們所討論的圓錐,是頂點與底圓圓心的連線垂直於底面的直圓錐。像甜筒便可視為直圓錐,要知道它的側面是什麼形狀?拆開甜筒的包裝,就會發現它的側面其實是個扇形,且其弧長恰好是底圓的圓周長,圓錐的展開圖如下頁圖所示。圓錐是由一個圓形底面和一個側面所組成,我們所討論的圓錐,是頂點與底圓圓心的連線垂直於底面的直圓錐。像甜筒便可視為直圓錐,要知道它的側面是什麼形狀?拆開甜筒的包裝,就會發現它的側面其實是個扇形,且其弧長恰好是底圓的圓周長,圓錐的展開圖如下頁圖所示。
由圓錐的展開圖可知:圓錐的表面積=側面(扇形)面積+底圓面積。由圓錐的展開圖可知:圓錐的表面積=側面(扇形)面積+底圓面積。
扇形弧長恰是底圓的圓周長,所以 AB 弧長=2×3×π=6π, 因此扇形 AOB 面積=8×8×π× =24π, 底圓面積=3×3×π=9π, 所以圓錐的表面積 =扇形面積+底圓面積 =24π+9π=33π(cm2)。 • 右圖為一個圓錐的展開圖,O 為圓錐頂 • 點,若 OA=8cm,底圓半徑為 3cm,求 • 此圓錐的表面積。
AB 的長=2×2×π=4π, 所以∠AOB= ×360°=144°, 圓錐的表面積 =2×2×π+(5×5×π)× =4π+10π =14π(cm2)。 • 右圖為一個圓錐的展開圖,O 為圓錐頂點,若 OA=5cm,底圓半徑=2cm,求∠AOB 的度數及圓錐的表面積。
右圖是將一顆石頭擲入水中後,水位高 • 度的變化情形,試根據右圖算出石頭的 • 體積。 水位上升 14-10=4 (公分), 容器的底面積為 10×10=100 (平方公分), 所以石頭的體積為 4×100=400 (立方公分)。
如右圖,有甲、乙兩個內部呈圓柱形的容器,內部半徑分別為 4cm、6cm,已知甲的水位高度是 9cm,乙是空的,若將甲的水全部倒入乙中,則乙的水位高度為何? 甲容器的水體積=(4×4×π)×9, 所以乙容器的水位高度=[(4×4×π)×9]÷(6×6×π)=4 (cm)。
旋轉一周所得到的立體圖形為半徑 5cm、柱高 8cm 的圓柱, 所以圓柱表面積 =2×(5×5×π)+8×(2×5×π) =50π+80π=130π(cm2)。 • 如右圖,一個長方形紙板繞著直線 L 旋轉 • 一周會得到一個立體圖形,則其表面積為 • 多少?
因為旋轉一周所得到的立體圖形為圓錐, 且其底圓半徑為 3cm, 因此扇形面積=5×5×π× =15π, 所以圓錐表面積 =扇形面積+底圓面積 =15π+3×3×π =24π(cm2)。 • 如右圖,一個直角三角形紙板繞著直線 L 旋轉一周會得到立體圖形,則其表面積為多少?