280 likes | 384 Views
This study by Roya Mohayaee, Jacques Colin, and Joe Silk explores the formation of new central black holes during galaxy mergers, and the emission of gravitational waves. Investigating the impact of black hole recoil velocities on the surrounding environment, the research delves into density profiles, accretion wakes, and the absolute luminosity of recoiled black holes in gamma rays. Future prospects involve comparing observations with diffused gamma-ray backgrounds and measurements from instruments like EGRET, GLAST, MAGIC, HESS, and VERITAS.
E N D
Accretion wake of recoiled black holes Roya Mohayaee CNRS, Institut d’Astrophysique de Paris Jacques Colin Observatoire de la Côte d’Azur, Nice Joe Silk University of Oxford astro-ph/07093321 J-P Lasota conference,Wroclaw 2007
Galaxy (black hole) mergers BHs at the centre of many galaxies Galaxy mergers BH mergers Emission of gravitational waves HST : colliding galaxies in Canis Major NGC 2207 –IC 2163 formation of a new centralBH
Black hole & dark matter Initially : initial ~ r- Adiabatic accretion: ffinal(Efinal,Lfinal) = finitial(Einitial,Linitial)
Black hole & dark matter (Young 1980, Gondolo & Silk 1999) Without BH : initial ~ r- With BH : final ~ r-(9-2)/(4-)
Absolute luminosity (L) of BH in -rays + L =luminosity factorx ∫2 dV /s luminosity factor =[N<v>/m2]c4/cm 3/s/Gev2 For M31: Fornasa et al 2007
Galaxy (black hole) mergers BHs at the centre of many galaxies Galaxy mergers BH mergers Emission of gravitational waves HST : colliding galaxies in Canis Major NGC 2207 –IC 2163 If isotropic formation of a new centralBH
Galaxy (black hole) mergers BHs at the centre of many galaxies Galaxy mergers BH mergers Emission of gravitational waves HST : colliding galaxies in Canis Major NGC 2207 –IC 2163 If isotropic If anisotropic Ejection of the BH From the galaxy formation of a new centralBH
Ejection of a black hole during galaxies mergers Spin=zero X=0.38
Ejection of a black hole during galaxies mergers spin ≠ 0 recoil velocity 4000 km/s Campanelli et al 2007
Orbit of an ejected BH high V~0 low high v Virial radius
Density profile of the accretion wake • Cold medium >Bondi-Hoyle accretion (1944) • Two-body problem +mass conservation V r (q) dq (x) dx=(q) dq
Density profile of the accretion wake hot medium (e.g. Maxwellian velocity distribution) > Danby & Camm (1957) V Jean’s theorem numerical solution for density Analytic solution for stationary BHs : (r)~ 1/√r
Wake density : hot versus cold medium Hot environment
Wake density : hot versus cold medium Hot environment Cold environment
Wake density contours Wake density contours,small
Highest density at the apapsis passage high V~0 low high v Virial radius
Time to reach the apapsis Initial velocity of BH / escape velocity
Absolute luminosity of a recoiled BH in -rays L(M,z) = [N<v>/m2] ∫2 dV /s L= 1025 (1+z)4 (M/Mo) R2cutoff /s LBH /Lhost galaxy
BH Mass function Press & Schechter (1974) Density peaks in initially random gaussian field collapse to form ‘‘galaxies’’ Number density of galaxies of mass M at redsift z N(M,z)
Diffused -ray background =H0 ∫∫t(M,z) L(M,z) N(M,z) dM dr(z) Time the BH spends at apapsis Press-Schechter mass function 1025 (1+z)4 (M/Mo) R2cutofff/s
Time spent at apapsis =H0 ∫∫ t(M,z) L(M,z) N(M,z) dM dr(z)
Future Prospects: Confronting the observations > 10 -8 cm-2 s-1 sr-1
Future Prospects: Confronting the observations > 10 -8 cm-2 s-1 sr-1 cm-2 s-1 sr-1 EGRET 10-7 GLAST 10-8 10-9 10-10 10-11 MAGIC 10-12 HESS, VERITAS