Energy management system overview
Download
1 / 58

ENERGY MANAGEMENT SYSTEM Overview - PowerPoint PPT Presentation


  • 135 Views
  • Uploaded on

ENERGY MANAGEMENT SYSTEM Overview. Dr Shekhar KELAPURE. October 6, 2014. PSTI, Bangalore. What we cover. Load Dispatch Why EMS What is EMS Components of EMS Network Applications Framework State Estimator Power Flow & Optimal Power Flow

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'ENERGY MANAGEMENT SYSTEM Overview' - meena


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
Energy management system overview

ENERGY MANAGEMENT SYSTEMOverview

DrShekhar KELAPURE

October 6, 2014

PSTI, Bangalore


What we cover

  • Load Dispatch

  • Why EMS

  • What is EMS

  • Components of EMS

  • Network Applications Framework

  • State Estimator

  • Power Flow & Optimal Power Flow

  • Contingency Analysis

  • Load Forecast

What we do NOT cover

  • Generation Applications

  • Fault Analysis

Dr Shekhar Kelapure


Load Dispatch

  • Objective -> Operate/Drive the Power System

    so that it is Stable

    Reliable

    Secure

    OPTIMAL

    Operate Power System “Efficiently”

  • What’s so big

Dr Shekhar Kelapure


Why Energy Management System (EMS)?

  • What is expected from the “Dispatcher”?

    Stable/reliable/secure and optimal “Operation”

    What the “Dispatcher” need to know?

    • Complete knowledge about the system

      (Parameters and models of the System components)

      And

    • Knowledge of the Situation – “Situation Awareness”

      (Real – Time data of the system)

      EMS – Mechanism to capture

      “system knowledge” and “situation awareness”

      And provide key indicators

Dr Shekhar Kelapure


What is Energy Management System?

  • Mechanism to hold the system knowledge

  • Mechanism to capture real time data (meas)

    Analog measurements (P, Q, V, F, “d”)

    Digital measurements (Status - CBs etc)

  • Validate the measurements

  • Analyze system performance using software programs and provide “key indicators”

  • Display data/measurements on “meaningful” displays

  • Send control commands

    to operate the system “efficiently”

Dr Shekhar Kelapure


Components of EMS

Network Application

Generation Application

Presentation Layer

(DISPLAYS)

Fault Analysis

Unit Commitment/ Scheduling

Contingency Analysis

Reserve/Cost Monitoring

Power Flow Optimal Power Flow

Economic Dispatch

Data Validation (State estimator)

Automatic Generation Control

Data Layer

Load Forecast

Data Acquisition (SCADA)

Databases


Network Application Functions

Objective – Analyze Power System performance from network (transmission and generation) perspective

To check

Base case violations

Optimal performance (Loss Minimization etc.)

Security Assessment & Enhancement

Fault Analysis

What we need –

“GOOD” measurements – Load, Gen, Flows info.

Transmission System Data – Capacities, R, X, B, Tap etc

Generation Data – Ratings & other parameters

Dr Shekhar Kelapure


NA Functions – used in EMS

  • State Estimator

    To identify Anomalies

  • Power Flow & Optimal Power Flow

    To carry out simulations

    To get optimal set-points

  • Contingency Analysis

    What if Analysis (N-1, N-2 etc)

  • Security Assessment and Enhancement

    Assessment and corrective actions

  • Load Forecast – Input to Simulations (NA functions)

Dr Shekhar Kelapure


Objective : Filter out Dead system components Establish connectivity information and Define the LIVE(Energized) network withInputs : System Components Details, Switch Statuses and the Measurements (V, Power Flows, injections etc)Output : Live(energized) network details Formation of networks (Island wise) Mark viable islands (with Generation)

Network Topology

Dr Shekhar Kelapure


Network Topology Formation

COMPONENT DETAILS

GEN1 BUS1

GEN2 BUS2

GEN3 BUS3

SYNCON1 BUS6

SYNCON2 BUS8

TRANS1 BUS5 BUS6

TRANS2 BUS4 BUS9

LINE1 BUS1 BUS2

LINE2 BUS1 BUS5

LINE3 BUS2 BUS3

SWITCH DETAILS

BUS1CB1

BUS1CB2

BUS1CB3

BUS1CB4

BUS2CB1

BUS2CB2

BUS2CB3

Dr Shekhar Kelapure


Network Topology – Node Terminology

Incomer #2

Incomer #1

Nodes with Unique ID

Secondary bus

Bus Couplers

Primary bus

Outgoing #2

Outgoing #1

Dr Shekhar Kelapure


Real-Time Data superimposed on Line Network

DIGITAL DATA

BUS1CB1 CLOSE

BUS1CB2 OPEN

BUS1CB3 CLOSE

BUS1CB4 CLOSE

BUS2CB1 CLOSE

BUS2CB2 CLOSE

BUS2CB3 OPEN

BUS2CB4 CLOSE

BUS2CB5 CLOSE

BUS2CB6 CLOSE

BUS2CB7 OPEN

BUS3CB1 OPEN

ANALOG DATA

P, Q FLOWS

GENERATIONS

VOLTAGES (ANGLES?)

FREQUENCY

1.05-15.73

-0.135 - j 0.058

0.051+ j0.02

-0.015-j0.01

1.055-15.67

-0.061 - j 0.016

1.035-16.47

-0.149 - j 0.056

-0.17-j0.08

1.057-15.3

-0.035 - j 0.018

0.015+j0.01

1.052-15.51

-0.09 - j 0.058

-0.076-j0.025

1.057-15.3

-0.295 - j 0.166

0.17+j0.075

1.060.00

2.32 - j 0.17

0.065+j0.038

0.077-j0.026

1.07-14.83

-0.112 + j 0.068

-0.17+j0.017

0.75+j0.06

1.09-13.66

00 + j .172

1.57-j0.17

1.021-8.77

-0.076 - j 0.018

0.16-j0.003

-0.73+j0.053

1.02-10.34

-0.478 + j 0.039

-0.62+j0.16

0.63-j0.14

-0.55+j0.054

-0.40+j0.003

-1.53+j0.31

0.24-j0.36

0.42+j0.02

0.56-j0.003

0.73+j0.06

1.045-4.98

0.183 + j 0.295

-0.23+j0.045

-0.71+j0.038

1.01-12.73

-0.942 + j 0.44

Dr Shekhar Kelapure


Network Topology - Output

CONNECTIVITY INFO

ISLAND #1

GEN1 BUS1

GEN2 BUS2

GEN3 BUS3

SYNCON2 BUS8

TRANS1 BUS5 BUS6

TRANS2 BUS4 BUS9

LINE1 BUS1 BUS2

LINE2 BUS1 BUS5

LINE3 BUS2 BUS4

ISLAND #2

LOAD12 BUS12

Dr Shekhar Kelapure


Objective : Identify and correct Anomalies, Suppress Bad dataRefine the measurement set to form the State of the systemInputs : Energized System Components Details (Connectivity + Parameters) Switch Statuses (CBs, ISOs)Measurements (V, Power Flows, Loads, Generations)Tuning Parameters (Tolerances, Statistical Info etc)Output : Estimated complex voltages, Estimated P and Q injections and flows Error Analysis, List of Bad DataMethodology : Weighted Least Square (WLS)

State Estimation

Dr Shekhar Kelapure


System Info, Measurements and switch statuses

Network Topology

Observable?

NO

Add Pseudo Measurements

YES

State Estimator

Refine Measurements

Print results

Voltage profile

Loads and Generations Real/ reactive flows

Meas Vs Estimates

YES

 acceptable?

NO

Bad Data Processing

Identify/suppress bad data

State Estimator (SE) – Data Flow

Dr Shekhar Kelapure


Measurements Bus Voltages Magnitudes (V) and Angles Generations (Pgen and Qgen)and Loads (PL and QL) Flows(real and reactive) at either end of lines/ transformer Size – 4 x Nlines(Flows) + Nbus (V) + Ngen (Gen)Output State variables (complex voltages at all buses – 2 x NBUS)? How many measurements are required?More measurements – slower the estimation process Less Measurements – erroneous results (poor estimation) Optimum - 1.5 to 2.8 times the state variables

Measurements

Dr Shekhar Kelapure


1.05

-0.135 - j 0.058

0.051+ j0.02

1.055

-0.061 - j 0.016

1.035

-0.149 - j 0.056

0.0+j0.0

-0.17-j0.08

2.32 - j 0.17

0.0+j0.0

1.057

-0.035 - j 0.018

1.052

-0.09 - j 0.058

0+j0

1.057

-0.295 - j 0.166

0.17+j0.075

1.06

2.32 - j 0.17

0.065+j0.038

0+-j0

1.07

-0.112 + j 0.068

-0.17+j0.017

0.75+j0.06

1.09

00 + j .172

1.57-j0.17

1.021

-0.076 - j 0.018

0.16-j0.003

-0.43+j0.053

1.02

-0.478 + j 0.039

-0.62+j0.16

0.63-j0.14

-0.55+j0.054

-0.40+j0.003

-1.53+j0.31

0.24-j0.360

0.42+j0.02

0.56-j0.003

0.73+j0.06

1.045

0.183 + j 0.295

0.23+j0.045

0+j0

1.01

-0.942 + j 0.44

Identify Measurement Errors

INCONSISTANCIES

FLOWS

P15 AND P51

P23 AND P32

Q34 AND Q43

LOADS

P12

Q12

V12

Dr Shekhar Kelapure


1.05

-0.135 - j 0.058

0.051+ j0.02

0.0

-0.0 - j 0.0

1.035

-0.149 - j 0.056

0.0+j0.0

-0.17-j0.08

2.32 - j 0.17

0.0+j0.0

1.057

-0.035 - j 0.018

1.052

-0.09 - j 0.058

0+j0

1.057

-0.295 - j 0.166

0.17+j0.075

1.06

2.32 - j 0.17

0.065+j0.038

0+-j0

1.07

-0.112 + j 0.068

-0.17+j0.017

0.75+j0.06

1.09

00 + j .172

1.57-j0.17

1.021

-0.076 - j 0.018

0.16-j0.003

-0.43+j0.053

1.02

-0.478 + j 0.039

-0.62+j0.16

0.63-j0.14

-0.55+j0.054

-0.40+j0.003

-1.53+j0.31

0.24-j0.360

0.42+j0.02

0.56-j0.003

0.+j0.0

1.045

0.183 + j 0.295

0.23+j0.045

0+j0

1.01

-0.942 + j 0.44

Suppress Erroneous Measurements

REMOVE

INCONSISTANCIES

SUPRESS

P51

P23

Q34

LOADS

P12 = 0.0

Q12 = 0.0

V12 = 0.0

IGNORE

OR

REPLACE WITH

APPROPRIATE VALUES

Dr Shekhar Kelapure


Check Observability

OBSERVABILITY

Insufficient

Measurements @

BUS10 and BUS11

1.05

-0.135 - j 0.058

0.051+ j0.02

1.057

-0.035 - j 0.018

0.0

-0.0 - j 0.0

1.035

-0.149 - j 0.056

0.0+j0.0

1.052

-0.09 - j 0.058

-0.17-j0.08

0.0+j0.0

0+j0

1.057

-0.295 - j 0.166

0.17+j0.075

1.06

2.32 - j 0.17

0.065+j0.038

0+-j0

1.07

-0.112 + j 0.068

-0.17+j0.017

0.75+j0.06

1.09

00 + j .172

1.57-j0.17

1.021

-0.076 - j 0.018

0.16-j0.003

-0.43+j0.053

1.02

-0.478 + j 0.039

-0.62+j0.16

0.63-j0.14

-0.55+j0.054

-0.40+j0.003

-1.53+j0.31

0.24-j0.360

0.42+j0.02

0.56-j0.003

0.+j0.0

1.045

0.183 + j 0.295

0.23+j0.045

0+j0

1.01

-0.942 + j 0.44

UNOBSERVABLE - Enable to estimate due to insufficient measurements

“Calculations beyond the reach of available measurements”

??WHAT TO DO??

- - - - - - - - - - - - - - - - - - - - ADD PSUEDO MEASUREMENTS

Dr Shekhar Kelapure


1.05 -15.73

-0.135 - j 0.058

0.051+ j0.02

0.0

-0.0 - j 0.0

1.035 -16.47

-0.149 - j 0.056

0.0+j0.0

-0.17-j0.08

0.0+j0.0

1.057-15.3

-0.035 - j 0.018

1.052-15.51

-0.09 - j 0.058

0+j0

1.057 -15.3

-0.295 - j 0.166

0.17+j0.075

1.06 0.00

2.32 - j 0.17

0.065+j0.038

0+-j0

1.07-14.83

-0.112 + j 0.068

-0.17+j0.017

0.65+j0.06

1.09-13.66

00 + j .172

1.56-j0.17

1.023 -8.77

-0.076 - j 0.018

0.18-j0.003

-0.63+j0.053

1.02-10.34

-0.478 + j 0.039

-0.59+j0.16

0.61-j0.14

-0.55+j0.054

-0.38+j0.003

-1.52+j0.31

0.18-j0.360

0.41+j0.02

0.56-j0.003

0.+j0.0

1.044 -4.98

0.183 + j 0.295

-0.17+j0.045

0+j0

1.012-12.73

-0.942 + j 0.44

Estimation Output

ESTIMATES :

Voltages

1 1.0600.00

1 1.044-4.980

1 1.012-12.73

1 1.020-10.34

Power Flows

1 2 1.56 –0.170

1 5 0.65 +0.060

2 1 –1.52 +0.31

2 4 0.55 –0.003

2 5 0.41 +0.020

Dr Shekhar Kelapure


1.05 -15.73

-0.135 - j 0.058

0.051+ j0.02

0.0

-0.0 - j 0.0

1.035 -16.47

-0.149 - j 0.056

0.0+j0.0

-0.17-j0.08

0.0+j0.0

1.057-15.3

-0.035 - j 0.018

1.052-15.51

-0.09 - j 0.058

0+j0

1.057 -15.3

-0.295 - j 0.166

0.17+j0.075

1.06 0.00

2.32 - j 0.17

0.065+j0.038

0+-j0

1.07-14.83

-0.112 + j 0.068

-0.17+j0.017

0.65+j0.06

1.09-13.66

00 + j .172

1.56-j0.17

1.023 -8.77

-0.076 - j 0.018

0.18-j0.003

-0.63+j0.053

1.02-10.34

-0.478 + j 0.039

-0.59+j0.16

0.61-j0.14

-0.55+j0.054

-0.38+j0.003

-1.52+j0.31

0.18-j0.360

0.41+j0.02

0.56-j0.003

0.+j0.0

1.044 -4.98

0.183 + j 0.295

-0.17+j0.045

0+j0

1.012-12.73

-0.942 + j 0.44

Bad Data Identification

IDENTIFY BAD DATA

Voltages

Measu Estimat

1 1.060 1.060

2 1.045 1.044

3 1.010 1.012

4 1.020 1.0204

Power Flows

Meas Estimat

1 2 1.57 1.56

1 5 0.75 0.65

2 1 –1.53 –1.52

2 4 0.56 0.55

2 5 0.42 0.41

Dr Shekhar Kelapure


1.05-15.73

-0.135 - j 0.058

0.051+ j0.02

-0.015-j0.01

1.055-15.67

-0.061 - j 0.016

1.035-16.47

-0.149 - j 0.056

-0.17-j0.08

1.057-15.3

-0.035 - j 0.018

0.015+j0.01

1.052-15.51

-0.09 - j 0.058

-0.076-j0.025

1.057-15.3

-0.295 - j 0.166

0.17+j0.075

1.060.00

2.32 - j 0.17

0.065+j0.038

0.077-j0.026

1.07-14.83

-0.112 + j 0.068

-0.17+j0.017

0.75+j0.06

1.09-13.66

00 + j .172

1.57-j0.17

1.021-8.77

-0.076 - j 0.018

0.16-j0.003

-0.73+j0.053

1.02-10.34

-0.478 + j 0.039

-0.62+j0.16

0.63-j0.14

-0.55+j0.054

-0.40+j0.003

-1.53+j0.31

0.24-j0.36

0.42+j0.02

0.56-j0.003

0.73+j0.06

1.045-4.98

0.183 + j 0.295

-0.23+j0.045

-0.71+j0.038

1.01-12.73

-0.942 + j 0.44

Bad Data Suppression

OMIT BAD MEAS

Power Flows

Meas Estimat

1 5 0.75 0.65

5 1 –0.43 -0.63

Dr Shekhar Kelapure


1.05-15.73

-0.135 - j 0.058

0.051+ j0.02

-0.015-j0.01

1.055-15.67

-0.061 - j 0.016

1.035-16.47

-0.149 - j 0.056

-0.17-j0.08

1.057-15.3

-0.035 - j 0.018

0.015+j0.01

1.052-15.51

-0.09 - j 0.058

-0.076-j0.025

1.057-15.3

-0.295 - j 0.166

0.17+j0.075

1.060.00

2.32 - j 0.17

0.065+j0.038

0.077-j0.026

1.07-14.83

-0.112 + j 0.068

-0.17+j0.017

0.75+j0.06

1.09-13.66

00 + j .172

1.57-j0.17

1.021-8.77

-0.076 - j 0.018

0.16-j0.003

-0.73+j0.053

1.02-10.34

-0.478 + j 0.039

-0.62+j0.16

0.63-j0.14

-0.55+j0.054

-0.40+j0.003

-1.53+j0.31

0.24-j0.36

0.42+j0.02

0.56-j0.003

0.73+j0.06

1.045-4.98

0.183 + j 0.295

-0.23+j0.045

-0.71+j0.038

1.01-12.73

-0.942 + j 0.44

Final Estimation

This becomes the “base case” for the remaining Network Analysis Functions

Dr Shekhar Kelapure


Objective : To compute the power flow in the branches thru the complex voltages for given load/ generation profileInputs : system information component parameters and connectivity load and generation profile, voltage set-pointsoutput : voltage profile (voltage magnitude and angles) power flow calculations loss calculation violations (voltage magnitude and power flows) “MODELLING IS CRUCIAL”

Power Flow

Dr Shekhar Kelapure


Kirchhoff’s current Law Power Injection at ith bus Si = Vi x Ii*?? Set of Simultaneous Non-linear equations ?? Gauss Seidel (only for very small systems) Newton Raphson (Normally used) Fast Decoupled (Modified Newton Raphson)

Power Flow – Basic equations

To bus 1

V1

To bus k

Vk

To bus j

Vj

Yik

Yi1

Yij

Vi

ith bus

Yii

Dr Shekhar Kelapure


Non-linear eqns Linearize & solve IterativelyCharacteristicsQuadratic ConvergenceNormally 3-5 iterations ReliableDifficulty - Handling Large Matrices

Newton Raphson based Power Flow

What’s way out?

Try de-coupling ?FDLF?

Assumptions

1. |V| ~ 1.0 p.u.

Bus angle ) very small

2. Sin()=0

3. Cos()=1

4. R << X

Dr Shekhar Kelapure


Power Flow, Inputs and Output

INPUTS

System DATA

LINE DETAILS(RXB)

XMER DETAILS(RXT)

GENERATOR DATA(QLT)

SHUNT DATA(B)

LOAD/GEN DATA

LOAD DATA

GENERATION DATA(PV)

TUNING PARAMETERS

OUTPUT

SLK – Pgen , Qgen

PV - δ , Qgen

PQ - δ , |V|

In addition

Branch Pflow , Qflow

LOSSES PL , QL

SHUNT POWER

Dr Shekhar Kelapure


IEEE Format

08/19/93 UW ARCHIVE 100.0 1962 W IEEE 14 Bus Test Case

BUS DATA FOLLOWS 14 ITEMS

1 Bus 1 HV 1 1 3 1.060 0.0 0.0 0.0 232.4 -16.9 0.0 1.060 0.0 0.0 0.0 0.0 0

2 Bus 2 HV 1 1 2 1.045 -4.98 21.7 12.7 40.0 42.4 0.0 1.045 50.0 -40.0 0.0 0.0 0

3 Bus 3 HV 1 1 2 1.010 -12.72 94.2 19.0 0.0 23.4 0.0 1.010 40.0 0.0 0.0 0.0 0

4 Bus 4 HV 1 1 0 1.019 -10.33 47.8 -3.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

5 Bus 5 HV 1 1 0 1.020 -8.78 7.6 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

6 Bus 6 LV 1 1 2 1.070 -14.22 11.2 7.5 0.0 12.2 0.0 1.070 24.0 -6.0 0.0 0.0 0

7 Bus 7 ZV 1 1 0 1.062 -13.37 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

8 Bus 8 TV 1 1 2 1.090 -13.36 0.0 0.0 0.0 17.4 0.0 1.090 24.0 -6.0 0.0 0.0 0

9 Bus 9 LV 1 1 0 1.056 -14.94 29.5 16.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.19 0

10 Bus 10 LV 1 1 0 1.051 -15.10 9.0 5.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

-999

BRANCH DATA FOLLOWS 20 ITEMS

1 2 1 1 1 0 0.01938 0.05917 0.0528 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 5 1 1 1 0 0.05403 0.22304 0.0492 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 3 1 1 1 0 0.04699 0.19797 0.0438 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 4 1 1 1 0 0.05811 0.17632 0.0340 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 5 1 1 1 0 0.05695 0.17388 0.0346 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

3 4 1 1 1 0 0.06701 0.17103 0.0128 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4 5 1 1 1 0 0.01335 0.04211 0.0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4 7 1 1 1 0 0.0 0.20912 0.0 0 0 0 0 0 0.978 0.0 0.0 0.0 0.0 0.0 0.0

4 9 1 1 1 0 0.0 0.55618 0.0 0 0 0 0 0 0.969 0.0 0.0 0.0 0.0 0.0 0.0

5 6 1 1 1 0 0.0 0.25202 0.0 0 0 0 0 0 0.932 0.0 0.0 0.0 0.0 0.0 0.0

6 11 1 1 1 0 0.09498 0.19890 0.0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6 12 1 1 1 0 0.12291 0.25581 0.0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6 13 1 1 1 0 0.06615 0.13027 0.0 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

-999

END OF DATA

Dr Shekhar Kelapure


Power Flow Results

BUS WISE DETAILED RESULTS

results for bus number 1

voltage(pu) 1.0600 angle(deg) -.0001

flow to (MW/MVAr) 2 1.5689 -.1744

flow to (MW/MVAr) 8 .7549 .0610

line charging (MVAr) -.0573

shunt injection (MVAr) .0000

Injections P/Q (MW/MVAr) 2.3238 -.1707

****************************************************************

results for bus number 2

voltage(pu) 1.0450 angle(deg) -4.9830

flow to (MW/MVAr) 1 -1.5259 .3056

flow to (MW/MVAr) 3 .7325 .0595

flow to (MW/MVAr) 6 .5629 -.0027

flow to (MW/MVAr) 8 .4136 .0243

line charging (MVAr) -.0917

shunt injection (MVAr) .0000

Injections P/Q (MW/MVAr) .1830 .2950

****************************************************************

BUS WISE RESULTS IN TABULATED FORM

sr_no bus_no v_mag v_angle(rad) p_inj q_inj

1 1 1.0600 .0000 2.3238 -.1707

2 2 1.0450 -.0870 .1830 .2950

3 3 1.0100 -.2221 -.9420 .0440

4 4 1.0700 -.2589 -.1120 .0682

5 5 1.0900 -.2385 .0000 .1716

6 6 1.0186 -.1805 -.4780 .0390

7 7 1.0623 -.2385 .0000 .0000

8 8 1.0207 -.1532 -.0760 -.0180

9 9 1.0567 -.2673 -.2950 -.1660

10 10 1.0517 -.2708 -.0900 -.0580

11 11 1.0573 -.2671 -.0350 -.0180

12 12 1.0551 -.2735 -.0610 -.0160

13 13 1.0503 -.2745 -.1350 -.0580

14 14 1.0351 -.2875 -.1490 -.0560

**********************************************************

SUMMARY

********************************************************

total generation P/Q (MW/MVAr) 2.5068 .4081

total load P/Q (MW/MVAr) -2.3730 -.3510

system losses P/Q (MW/MVAr) -.1339 -.5522

total charging (MVAr) .2830

total shunt power (MVAr) .2122

********************************************************

OR You can print them in “IEEE Format” exactly same as input

So that other programs can read it easily

Dr Shekhar Kelapure


Objective : Optimize the system parameters for better performanceInputs : System information (parameters & connectivity) load and generation profile, set-points(V, t, MW) component modeling and constraintsOutput : Voltage profile (voltage magnitude and angles) Optimized power flow calculations Violations (V, MW, MVAr) – remaining Major difficulty : Getting well-behaved objective function and constraints as function of control variables

Optimal Power Flow

Dr Shekhar Kelapure


Objective : Minimize PLOSS or Overload AlleviationsSubject to : Satisfaction of load flow equations (Power Balance) Limits on the control variables (set-points) Limits on line/transformer loading Maintain Load Generation BalanceControl Variables : Real Power Controls : MW Gen, Tie-Line Flows, HVDC/FACTS set-points Reactive Power Controls Generator voltage set-points VAr resources (Capacitors, Reactors, SVCs, Syn. condensers) Transformer taps HIGHLY NON-LINEAR PROBLEM – Solved using Gradient, SLP or any other method

Problem Formulation

Dr Shekhar Kelapure


C

BSH_14 = 0.00

0.97-23.7

-0.189 - j 0.0812

0.073+ j0.036

-0.022-j0.013

0.98-23.6

-0.085 - j 0.022

0.94-24.88

-0.209 - j 0.078

-0.24-j0.104

-0.07 - j 0.03

0.983-23.0

-0.049 - j 0.025

0.022+j0.013

0.97-23.3

-0.126 - j 0.0812

-0.107-j0.036

1.057-15.3

-0.295 - j 0.166

0.247+j0.11

1.060.00

3.36 + j 0.41

0.091+j0.062

0.11+j0.039

1.0-22.27

-0.15 + j 0.13

-0.23-j0.01

1.08+j0.27

1.037-20.28

00 + j .24

2.28+j0.19

0.97-12.67

-0.106 - j 0.025

0.226+j0.041

-1.02-j0.03

0.96-15.03

-0.67 + j 0.054

-0.87+j0.14

0.88-j0.10

-0.77+j0.028

-0.57-j0.03

-2.18+j0.08

0.33-j0.08

0.59+j0.09

0.80+j0.08

1.05+j0.15

1.015-6.99

0.256 + j 0.322

-0.32+j0.10

-0.99+j0.065

0.96-18.88

-1.319 + j 0.134

Power Flow Base case

LOSS REDUCTION

REAL POWER LOSSES

(UNOPTIMISED)

BSH_14=0.0

0.2893 p.u.

Dr Shekhar Kelapure


C

BSH_14 = 0.05

0.99-23.54

-0.189 - j 0.0812

0.072+ j0.017

-0.021-j0.009

0.995-23.42

-0.085 - j 0.022

0.97-24.86

-0.209 - j 0.078

-0.24-j0.09

-0.07 - j 0.03

0.997-22.8

-0.049 - j 0.025

0.021+j0.009

0.99-23.1

-0.126 - j 0.0812

-0.106-j0.032

1.057-15.3

-0.295 - j 0.166

0.244+j0.098

1.060.00

3.35 + j 0.34

0.091+j0.061

0.10+j0.035

1.02-22.09

-0.16 + j 0.13

-0.23-j0.003

1.08+j0.25

1.048-20.18

00 + j .24

2.27+j0.15

0.98-12.68

-0.106 - j 0.025

0.226+j0.028

-1.02-j0.006

0.97-15.02

-0.67 + j 0.054

-0.87+j0.14

0.88-j0.12

-0.77+j0.045

-0.57-j0.018

-2.18+j0.13

0.33-j0.08

0.59+j0.08

0.80+j0.07

1.04+j0.14

1.018-7.01

0.256 + j 0.322

-0.32+j0.10

-0.99+j0.073

0.96-18.82

-1.319 + j 0.134

OPF – Loss Minimization

LOSS REDUCTION

REAL POWER LOSSES

(UNOPTIMISED)

BSH_14=0.0

0.2893 p.u.

REAL POWER LOSSES

(OPTIMISED)

BSH_14=0.05

0.2854 p.u.

Loss Reduction

1.35%

Dr Shekhar Kelapure


0.98-22.5

-0.189 - j 0.0812

0.072+ j0.036

-0.021-j0.013

0.992-22.42

-0.085 - j 0.022

0.97-24.86

-0.209 - j 0.078

-0.24-j0.10

-0.07 - j 0.03

0.994-21.8

-0.049 - j 0.025

0.022+j0.013

0.98-22.1

-0.126 - j 0.0812

-0.107-j0.036

1.00-21.73

-0.413 - j 0.232

0.244+j0.113

1.060.00

2.90 + j 0.28

0.090+j0.062

0.11+j0.039

1.014-21.11

-0.16 + j 0.13

-0.23-j0.008

1.00+j0.24

1.048-19.12

00 + j .24

1.897+j0.104

0.98-11.72

-0.106 - j 0.025

0.23+j0.039

-0.952-j0.026

0.97-13.95

-0.67 + j 0.054

-0.84+j0.14

0.85-j0.11

-0.79+j0.033

-0.60-j0.027

-1.835+j0.086

0.32-j0.08

0.62+j0.09

0.83+j0.083

1.059+j0.148

1.025-5.82

0.68 + j 0.322

-0.31+j0.10

-1.01+j0.068

0.97-17.61

-1.319 + j 0.134

OPF – Overload Alleviation

Overload Min

REAL POWER FLOWS

(UNOPTIMISED)

1 2 2.27

1 5 1.08

G1 = 3.35

G2 = 0.256

REAL POWER FLOWS

(OPTIMISED)

1 2 1.897

1 5 1.00

G1 = 2.90

G2 = 0.68

Dr Shekhar Kelapure


C

BSH_14 = 0.05

0.99-23.54

-0.189 - j 0.0812

0.072+ j0.017

-0.021-j0.009

0.995-23.42

-0.085 - j 0.022

0.97-24.86

-0.209 - j 0.078

-0.24-j0.09

-0.07 - j 0.03

0.997-22.8

-0.049 - j 0.025

0.021+j0.009

0.99-23.1

-0.126 - j 0.0812

-0.106-j0.032

1.057-15.3

-0.295 - j 0.166

0.244+j0.098

1.060.00

3.35 + j 0.34

0.091+j0.061

0.10+j0.035

1.02-22.09

-0.16 + j 0.13

-0.23-j0.003

1.08+j0.25

1.048-20.18

00 + j .24

2.27+j0.15

0.98-12.68

-0.106 - j 0.025

0.226+j0.028

-1.02-j0.006

0.97-15.02

-0.67 + j 0.054

-0.87+j0.14

0.88-j0.12

-0.77+j0.045

-0.57-j0.018

-2.18+j0.13

0.33-j0.08

0.59+j0.08

0.80+j0.07

1.04+j0.14

1.018-7.01

0.256 + j 0.322

-0.32+j0.10

-0.99+j0.073

0.96-18.82

-1.319 + j 0.134

OPF – Voltage Alleviation

Voltage Alleviation

Voltage V_14

(UNOPTIMISED)

BSH_14=0.0

0.94 p.u.

Voltage V_14

(OPTIMISED)

BSH_14=0.05

0.97 p.u.

Dr Shekhar Kelapure


Objective : Evaluation of the system performance under outagesInputs : System information (Parameters and connectivity info) Load and generation profile, voltage set-points Component modeling, Rating of the equipmentOutput : List of CRITICAL contingencies leading to violations Approach : Approximate simulation

Contingency Analysis

Dr Shekhar Kelapure


List of credible outages (having more probability of occurrence)

System Information and Base Case

State Estimator

Efficient Screening

Ranking

(Based on Per. Indices)

Print results

Ranking List

Power Flow results for Top ranked outages

Analysis

Full Evaluation of Severe Outages

Contingency Analysis – Flow Chart

Dr Shekhar Kelapure


Possible outages : occurrence) All lines, transformers, generators, shunts, loadsFor 14 bus sample system, Total number of single component outages 17 lines + 3 transformers + 2 generators + 3 shuntsTOTAL = 25 + (?multiple outages?)WHAT IF the System size is 1000 buses?Challenge : 1500 AC load flow simulations of 1000 bus systemTake considerable time

Contingency Analysis – possible contingencies

Dr Shekhar Kelapure


Filtering/Screening Criteria occurrence)1. Probability of occurrence2. Use of approx. analysis likePower flow with less tolerance Power flow – 1 iteration, esp. for overload analysis Network equivalents (outage impact - local)Ranking SEVERE contingencies based on performance indices - overload index - voltage indexFull AC power flow analysis for top ranked contingencies

Processing Approach

1500

Possible CTGs

Credible CTGs

150

Severe

CTGs

15

Dr Shekhar Kelapure


Normally used performance Indices occurrence) - overload index - voltage index - Based on Type of limit violated and % violations Index = 1000 x Type of limit violated + (100 + %violation) e.g. Emergency limit violated by 12%Index = 2112

Severity Indices

Limits Type

1 – Normal

2 – Emergency

3 – LoadShed

Dr Shekhar Kelapure


Base Case Power Flow Results occurrence)

1.05-15.73

-0.135 - j 0.058

0.051+ j0.02

-0.015-j0.01

1.055-15.67

-0.061 - j 0.016

1.035-16.47

-0.149 - j 0.056

-0.17-j0.08

1.057-15.3

-0.035 - j 0.018

0.015+j0.01

1.052-15.51

-0.09 - j 0.058

-0.076-j0.025

1.057-15.3

-0.295 - j 0.166

0.17+j0.075

1.060.00

2.32 - j 0.17

0.065+j0.038

0.077-j0.026

1.07-14.83

-0.112 + j 0.068

-0.17+j0.017

0.75+j0.06

1.09-13.66

00 + j .172

1.57-j0.17

1.021-8.77

-0.076 - j 0.018

0.16-j0.003

-0.73+j0.053

1.02-10.34

-0.478 + j 0.039

-0.62+j0.16

0.63-j0.14

-0.55+j0.054

-0.40+j0.003

-1.53+j0.31

0.24-j0.36

0.42+j0.02

0.56-j0.003

0.73+j0.06

1.045-4.98

0.183 + j 0.295

-0.23+j0.045

-0.71+j0.038

1.01-12.73

-0.942 + j 0.44

Dr Shekhar Kelapure


Example - Generator Outage occurrence)

1.05-16.73

-0.135 - j 0.058

0.053+ j0.03

-0.016-j0.01

1.055-16.67

-0.061 - j 0.016

1.033-17.47

-0.149 - j 0.056

-0.17-j0.07

1.056-16.3

-0.035 - j 0.018

0.016+j0.01

1.05-16.51

-0.09 - j 0.058

-0.0767-j0.025

1.053-16.3

-0.295 - j 0.166

0.17+j0.078

1.060.00

2.75 - j 0.13

0.067+j0.044

0.077+j0.076

1.07-15.84

-0.112 + j 0.113

-0.17+j0.026

0.83+j0.09

1.09-14.67

00 + j .194

1.92+j0.09

1.012-9.66

-0.076 - j 0.018

0.16-j0.011

-0.80+j0.045

1.01-11.34

-0.478 + j 0.039

-0.65+j0.18

0.66-j0.16

-0.52+j0.114

-0.37+j0.06

-1.86+j0.10

0.24-j0.085

0.38-j0.036

0.53-j0.065

0.726-j0.04

1.025-5.91

-0.217 - j 0.127

-0.24+j0.097

-0.70+j0.14

1.01-14.00

-0.942 + j 0.20

Dr Shekhar Kelapure


Example – Line outage occurrence)

1.05-17.45

-0.135 - j 0.058

0.046+ j0.03

-0.014-j0.01

1.055-17.4

-0.061 - j 0.016

1.034-18.06

-0.149 - j 0.056

-0.17-j0.08

-0.046 - j 0.026

1.056-16.9

-0.035 - j 0.018

0.014+j0.01

1.05-17.05

-0.09 - j 0.058

-0.0754-j0.026

1.055-16.8

-0.295 - j 0.166

0.17+j0.079

1.060.00

2.33 - j 0.10

0.057+j0.046

0.076-j0.027

1.07-16.6

-0.112 + j 0.117

-0.17+j0.025

0.91+j0.09

1.09-15.1

00 + j .187

1.42-j0.14

1.011-10.66

-0.076 - j 0.018

0.16-j0.003

-0.87+j0.074

1.012-11.66

-0.478 + j 0.039

-0.38+j0.15

0.38-j0.14

-0.72+j0.096

0.0+j0.0

-1.38+j0.25

0.149-j0.42

0.0+j0.0

0.75-j0.006

0.82+j0.05

1.045-4.49

0.183 + j 0.219

-0.148+j0.046

-0.79+j0.072

1.01-13.25

-0.942 + j 0.078

Dr Shekhar Kelapure


O occurrence)bjective : Evaluate optimal set-points to bring the system back to normal state in post contingency scenarioInputs : System information (Parameters and connectivity info) Load and generation profile, voltage set-points Component modeling and constraints List of severe contingenciesoutput : Post Contingency complex voltage profile (V, d) Power flow calculations (after implementing optimized controls)Two Approaches:Preventive ActionCorrective Action

Security Constrained Optimization

Dr Shekhar Kelapure


Objective : min Overloads OR Voltage excursions occurrence)subject to : Satisfaction of load flow equations Limits on the control variables (set-points) Maintain Load Generation Balance Minimum deviation in set-points Pre and post outage(each severe outage) constraintsControl Variables :1. Generator voltage setpoints2. VAr resources (capacitors, reactors, SVCs, syn. condensers)3. Transformer Taps 4. Generations (MW)5. Tie-Line Flows, HVDC/FACTs controllers

SCO – Preventive Action (PA)

Dr Shekhar Kelapure


Challenges : occurrence) Single Big problem Large number of constraints (considering all outages together) Conflicts between constraints May lead to infeasible solution Costly (Contingency may not happen at all)Then WHY? For some severe contingencies, post-outage controls rescheduling may not be possible due to time limitations

Preventive Action - Challenges

Dr Shekhar Kelapure


Objective : min Overloads OR Voltage excursions occurrence)subject to : Satisfaction of load flow equations Limits on the control variables (set-points) Maintain Load Generation Balance Minimum deviation in set-pointsOnly Post outage constraints for specific contingencyControl Variables :1. Generator voltage setpoints2. VAr resources (capacitors, reactors, SVCs, syn. condensers)3. Transformer Taps 4. Generations5. Tie-Line Flows, HVDC/FACTs controllers

SCO – Corrective Action

Dr Shekhar Kelapure


Advantages : occurrence)Since occurrence of contingency is NOT certain, keeping post contingency plans ready is better (Preparedness)Separate optimization problem for each outage case Sometimes it may NOT be possible to make changes after outageChallenges :Post contingency scenario – Time is crucialWhether to go for PA/CA? For severe contingencies where the execution of CA is not possible, then check the probability and consequences and implement PA

Corrective Action

Dr Shekhar Kelapure


Load Forecast occurrence)

Objective :

To get the accurate forecast of system/ area loads

Inputs :

Load History (Normally stored from actual SCADA data)

Loads are function Weather data

Effective weather forecast

Weather history data

Formula to get derived forecast variable

Planning Inputs

Dr Shekhar Kelapure


Load Forecast occurrence)Types

Short Term:

Forecast Load for next hour (for every 5 mins)

Forecasting Emergencies in Operations (Real Time)

Medium Term

Forecast Load for a week (hourly forecast)

Normally used in operations (daily planning)

Long Term

Forecast Load for “>” 1 Year (monthly forecast)

Normally used in Planning

Dr Shekhar Kelapure


Load Forecast Methodologies occurrence)

Regression Technique:

Based on Historical load data and weather forecast

Similar day forecast

Based on the similar weather day in history

Load Patterns (Save cases)

Saved Load curved in history can be used to forecast

With appropriate scaling/shifting etc

Dr Shekhar Kelapure


Regression Analysis occurrence)

Daily Load Curve :

Weekly Load Curve :

Dr Shekhar Kelapure


Regression Technique occurrence)

Important to Note :

Load curved are cyclic in nature over the week

(e.g. Load pattern is similar on all Mondays)

With appropriate Load growth (say 12% over year)

Thus Regression Technique can effectively be used

Challenges :

Loads are highly dependent on weather (Rains?)

Special days (festivals have different load patterns)

Planning impact can not be handled

Dr Shekhar Kelapure


Similar Day Forecast occurrence)

Advantage :

Takes care of weather dependencies

Procedure :

- Get the weather forecast for the selected day

- Identify similar weather day in history

(closest match)

- take it as base load and apply load growth

Easy and more accurate for the weather sensitive loads

Dr Shekhar Kelapure


Load Patterns occurrence)

Advantage :

This can handle exceptions

i.e. special days like festivals

Procedure :

- Save the load patterns for the special days

- take it as base load and apply load growth

Easy and more accurate for the special days loads

Dr Shekhar Kelapure


Load Forecast Applications occurrence)

  • Power System Planning

  • As Pseudo Measurements in State Estimator

  • Power Flow Simulation Studies

  • Generation Applications

    • Unit Commitment

    • Hydrothermal Scheduling

    • Maintenance Scheduling

      Awareness of worst situations and Readiness

Dr Shekhar Kelapure


Load Forecast - Summary occurrence)

Load Forecast highly dependent on

Historical Data

Weather Data/ forecast

Types of Load Forecast

All techniques (regression + similar day + load patterns) need to be effectively used to get better results

Other techniques : Artificial Neural Network etc.

For Long terms Load Forecasting –

Appropriate Load growth and the planning indices are crucial

Dr Shekhar Kelapure


ad