vertex fault tolerance for multiple spanning paths in hypercube n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Vertex fault tolerance for multiple spanning paths in hypercube PowerPoint Presentation
Download Presentation
Vertex fault tolerance for multiple spanning paths in hypercube

Loading in 2 Seconds...

play fullscreen
1 / 24

Vertex fault tolerance for multiple spanning paths in hypercube - PowerPoint PPT Presentation


  • 131 Views
  • Uploaded on

Vertex fault tolerance for multiple spanning paths in hypercube. Department of Computer Science and Information Engineering Dayeh University Professor: Chun-Nan Hung 洪春男 教授 Report by Guan-Yu Shi 施冠宇. Outline. Introduction Vertex fault tolerance for multiple spanning paths in hypercube

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'Vertex fault tolerance for multiple spanning paths in hypercube' - maxine-ross


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
vertex fault tolerance for multiple spanning paths in hypercube

Vertex fault tolerance for multiple spanning paths in hypercube

Department of Computer Science and Information Engineering

Dayeh University

Professor: Chun-Nan Hung 洪春男 教授

Report by Guan-Yu Shi 施冠宇

outline
Outline
  • Introduction
  • Vertex fault tolerance for multiple spanning paths in hypercube
  • Conclusion
introduction
Introduction
  • A graph: Hypercube
  • Q1=K2 , Qn=Qn-1 X K2
  • 2nvertices

100

101

01

000

00

001

0

1

111

110

10

11

010

011

Q1

Q2

Q3

slide8

X

X

Q4:

|Fw|=0,|Fb|=2,|Kw|=4 ,|Kb|= 0

|Fw|=0,|Fb|=2,|Kw|=2 ,|Kb|= 0?

Q4

slide10

Q8:

|Fw|=|Fb|=0,|Kw|=|Kb|=4

Q7:

|Fw|=|Fb|=0,|Kw|=|Kb|=3

|Fw|=1,|Fb|=0,|Kw|=2,|Kb|=4

t1

S2

S1

S4

t2

t4

t3

S3

t4能否直接連到Q12n-1?

Q07

Q17

lemma 3
Lemma 3

Case 1: |Fw| = 0,|F1| = 0 case 1.1: |K1b| = 0 case1.1.1 :|K1w| = 0

case1.1.2 :|K1w|  1

case 1.2: |K1b|  1, |K1w| = 0

case 1.3: |K1b|  1, |K1w|  1

case 1.3.1: |K11| = 0, |K1w|  |K1b|

case 1.3.2: |K11| = 0, |K1b| > |K1w| and |K01w|  1

case 1.3.3: |K11| = 0, |K1b| > |K1w| and |K01w| = 0

case 1.3.4: |K11|  2, |K0w|  1

case 1.3.5: |K11|  2, |K0w| = 0

Case 2: |Fw| = 0, |F0b|  1, |F1b|  1

case 2.1: Kw  V0w or Kw  V1w

case 2.2: |K0w|  1, |K1w|  1

Case 3: |Fb|  1, ,|Fw|  1 and (|F0| = 0 or |F1| = 0) case 3.1: |K1| = 0

case 3.2: |K1w| = 0 or |K1b| = 0

case 3.3: |K1w|  1, |K1b|  1

case 3.3.1: |K11| = 0

case 3,3.2: |K11|  2

Case 4: |Fb|  1, ,|Fw|  1, |F0|  1 ,|F1|  1 case 4.1: |K0b|+|F0b| = 0 or |K0w|+|F0w| = 0 or |K1b|+|F1b| = 0 or |K1w|+|F1w| = 0

case 4.2: |K0b|+|F0b|  1 or |K0w|+|F0w|  1 or |K1b|+|F1b|  1 or |K1w|+|F1w|  1

case 1 f w 0 f 1 0 case1 1 k 1 b 0 case1 1 1 k 1 w 0
Case 1: |Fw| = 0,|F1| = 0 case1.1: |K1b| = 0 case1.1.1 :|K1w| = 0

Q17:

|Fw|=0,|Fb|=3,|Kw|=9 ,|Kb|=3

Q16:

|Fw|=0,|Fb|=3,|Kw|=8 ,|Kb|=2

|Fw|=0,|Fb|=2,|Kw|=8 ,|Kb|=4

S4

S3

S2

S5

w

S1

(w)

t4

(t1)

t1

S6

(z)

z

t5

t3

t2

y

t6

(y)

x

x

x

x

Q02n-2

Q12n-2

case 2 f w 0 f 0 b 1 f 1 b 1 case2 1 k w v 0 w or k w v 1 w
Case 2: |Fw| = 0,|F0b|  1, ,|F1b|  1 case2.1: Kw V0wor Kw V1w

Q17:

|Fw|=0,|Fb|=3,|Kw|=9 ,|Kb|=3

Q16:

|Fw|=0,|Fb|=3,|Kw|=8 ,|Kb|=2

|Fw|=0,|Fb|=2,|Kw|=8 ,|Kb|=4

|Fw|=0,|Fb|=1,|Kw|=5 ,|Kb|=3

t1

S2

S6

S5

(y1)

y1

(S1)

S1

y2

S3

t3

(y2)

t6

t2

t5

t4

S4

x

x

x

Q02n-2

Q12n-2

case 3 f b 1 f w 1 and f 0 0 or f 1 0 case3 1 k 1 0
Case 3: |Fb|  1, ,|Fw|  1 and (|F0| = 0 or |F1| = 0) case3.1: |K1| = 0

S2

Q17:

|Fw|=1,|Fb|=2,|Kw|=7 ,|Kb|=5

Q16:

|Fw|=1,|Fb|=2,|Kw|=6 ,|Kb|=4

|Fw|=0,|Fb|=1,|Kw|=8 ,|Kb|=6

t2

S5

S3

S4

S1

y1

(y1)

t5

t4

t3

x1

t1

S6

y2

(y2)

x

t6

x2

x

x

Q02n-2

Q12n-2

slide17

Case 4: |Fb|  1, ,|Fw|  1, |F0|  1 ,|F1|  1 case4.1: |K0b|+|F0b| = 0 or |K0w|+|F0w| = 0 or |K1b|+|F1b| = 0 or |K1w|+|F1w| = 0

t2

Q17:

|Fw|=1,|Fb|=2,|Kw|=7 ,|Kb|=5

Q16:

|Fw|=|Fb|=0,|Kw|=|Kb|=8

|Fw|=1,|Fb|=2,|Kw|=6 ,|Kb|=4

|Fw|=1,|Fb|=0,|Kw|=6 ,|Kb|=8

|Fw|=0,|Fb|=2,|Kw|=8 ,|Kb|=4

|Fw|=0,|Fb|=2,|Kw|=7 ,|Kb|=3

S2

t4

S3

t5

t3

S4

S5

S6

t1

t6

x

(y)

y

S1

x

x

x

Q02n-2

Q12n-2

lemma 4
Lemma 4

Case 1: |K0b| = n or |K0w| = n case 1.1: |K0w| = n case1.1.1 :|K00bb|  1

case1.1.2 :|K00bb| = 0

case 1.2: |K01ww|  1 or |K11ww|  1

case 1.3: |K01ww| = 0 and |K1w| = 1

case 1.4: |K01ww| = 0 and |K11ww|  1 and |K1w|  2

Case 2: |K0b|  (n -1) and |K0w|  (n-1)

case 2.1: |K11| > 0

case 2.2: |K11| = 0 and |K0|  (n+1) and |Kbb| > 0

case 2.3: |K11| = 0 and ( |K0| = n or |Kbb| = 0 )