1 / 77

Baryogenesis, EDMs, and The Higgs Boson

Baryogenesis, EDMs, and The Higgs Boson. M.J. Ramsey-Musolf Wisconsin-Madison. NPAC. Theoretical Nuclear, Particle, Astrophysics & Cosmology. http://www.physics.wisc.edu/groups/particle-theory/. FNAL Seminar, Oct 2008. Cosmic Energy Budget. Dark Matter.

marlin
Download Presentation

Baryogenesis, EDMs, and The Higgs Boson

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Baryogenesis, EDMs, and The Higgs Boson M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology http://www.physics.wisc.edu/groups/particle-theory/ FNAL Seminar, Oct 2008

  2. Cosmic Energy Budget Dark Matter Leptogenesis: discover the ingredients: LN- & CP-violation in neutrinos Baryogenesis & EDMs Higgs Phenomenology D. Chung Wisconsin V. Cirigliano LANL B. Garbrecht Wisconsin C. Lee LBL Y. Li Wisconsin S. Profumo UC Santa Cruz S. Tulin Caltech G. Shaugnessy Wisconsin Dark Energy Baryons V. Barger Wisconsin P. Langacker IAS M. McCaskey Wisconsin D. O’Connell IAS G. Shaugnessy Wisconsin M. Wise Caltech Weak scale baryogenesis: test experimentally: EDMs & Higgs Boson Searches PRD 71: 075010 (2005) PRD 73: 115009 (2006) JHEP 0607:002 (2006 ) JHEP 0807:010 (2007) ArXiv 0806.2693/hep-ph ArXiv 0808.1144/hep-ph PRD 75: 037701 (2007) PRD 77: 035005 (2008) What are the quantitative implications of new EDM experiments for explaining the origin of the baryonic component of the Universe ? What are the implications of Higgs searches at LHC and Higgs studies at ILC for explaining the baryon asymmetry ? Explaining non-zero rB requires CP-violation and a scalar sector beyond those of the Standard Model (assuming inflation set rB=0) What is the origin of baryonic matter ?

  3. Baryogenesis: Myths • EW baryogenesis requires a light SUSY Higgs boson (mH < 120 GeV) • EW baryogenesis requires SUSY with a light RH stop • EDMs have nearly killed EW baryogenesis • Leptogenesis is the most viable option

  4. Outline Baryogenesis: General Features Computing YB systematically: progress & challenges Illustrative phenomenology in MSSM: EDMs, Colliders, & DM Probing EW phase transition w/ Higgs boson phenomenology

  5. Anomalous B-violating processes Sakharov Criteria • B violation • C & CP violation • Nonequilibrium dynamics Prevent washout by inverse processes Sakharov, 1967 Baryogenesis: Ingredients

  6. Weak Scale Baryogenesis • B violation • C & CP violation • Nonequilibrium dynamics Sakharov, 1967 Kuzmin, Rubakov, Shaposhnikov McLerran,… EW Baryogenesis: Standard Model Anomalous Processes Different vacua: D(B+L)= DNCS Sphaleron Transitions

  7. Shaposhnikov Weak Scale Baryogenesis • B violation • C & CP violation • Nonequilibrium dynamics 1st order 2nd order Sakharov, 1967 • CP-violation too weak • EWPT too weak Increasing mh EW Baryogenesis: Standard Model

  8. Quantum Transport CPV Chem Eq R-M et al Unbroken phase Weak Scale Baryogenesis Systematic baryogenesis: SD equations + power counting Veff (f,T): Requirements on Higgs sector extensions & expt’l probes • B violation • C & CP violation • Nonequilibrium dynamics Topological transitions Broken phase CP Violation 1st order phase transition Sakharov, 1967 Theoretical Issues: Strength of phase transition (Higgs sector) Bubble dynamics (numerical) Transport at phase boundary (non-eq QFT) EDMs: many-body physics & QCD • Is it viable? • Can experiment constrain it? • How reliably can we compute it? • Is it viable? • Can experiment constrain it? • How reliably can we compute it? Baryogenesis: New Electroweak Physics

  9. CKM EDMs: New CPV? • SM “background” well below new CPV expectations • New expts: 102 to 103 more sensitive • CPV needed for BAU?

  10. EW Precision Data: 95% CL (our fit-GAPP) LEP Exclusion Non-SM Higgs(es) ? EWSB: Higgs? • SM “background” well below new CPV expectations • New expts: 102 to 103 more sensitive • CPV needed for BAU? LEPEWWG

  11. Theory Cosmology LHC EDMs Theory Baryogenesis: EDMs & Colliders

  12. Weak Scale Baryogenesis • B violation • C & CP violation • Nonequilibrium dynamics Topological transitions Broken phase 1st order phase transition Sakharov, 1967 “Gentle” departure from equilibrium & scale hierarchy • Is it viable? • Can experiment constrain it? • How reliably can we compute it? Cirigliano, Lee, R-M,Tulin Baryogenesis: New Electroweak Physics 90’s: Cohen, Kaplan, NelsonJoyce, Prokopec, Turok Unbroken phase CP Violation Theoretical Issues: Strength of phase transition (Higgs sector) Bubble dynamics (expansion rate) Transport at phase boundary (non-eq QFT) EDMs: many-body physics & QCD

  13. CPV phases Parameters in Lnew Bubble & PT dynamics Departure from equilibrium • Earliest work: QM scattering & stat mech • New developments: non-equilibrium QFT Systematic Baryogenesis Goal: Derive dependence of YB on parameters Lnew systematically (controlled approximations)

  14. Assumptions: LI Evolution is adiabatic Spectrum is non-degenerate Density is zero Evolution is non-adiabatic: vwall > 0 -> decoherence Spectrum is degenerate: T > 0 -> Quasiparticles mix Density is non-zero Quantum Transport & Baryogenesis Electroweak Baryogenesis Particle Propagation: Beyond familiar (Peskin) QFT

  15. Fast, but not too fast Work to lowest, non-trivial order in e’s Error is O (e) ~ 0.1 ed =vw (k / w ) << 1 Hot, but not too hot Cirigliano, Lee, R-M ep = Gp / w << 1 Dense, but not too dense em = m / T << 1 Systematically derive transport eq’s from Lnew Evolution is non-adiabatic: vwall > 0 -> decoherence Spectrum is degenerate: T > 0 -> Quasiparticles mix Density is non-zero Competing Dynamics CPV Ch eq Cirigliano, Lee,Tulin, R-M Quantum Transport & Baryogenesis Electroweak Baryogenesis Scale Hierarchy:

  16. GY >> other rates? (No) • Majorana fermions ? (densities decouple) • Particle-sparticle eq? • Density indep thermal widths? = + Expand in ed,p,m CP violating sources + From S-D Equations: Chiral Relaxation • SCPV • GM , GH , GY … Approximations Producing nL = 0 Strong sphalerons Riotto, Carena et al, R-M et al, Konstandin et al • Neglect O(e3) terms • Others under scrutiny • SCPV • GM , GH , GY , GSS … + R-M, Chung, Tulin, Garbrecht, Lee, Cirigliano R-M et al Objectives: • Determine param dep of SCPV and all Gs and not just that of SCPV • Develop general methods for any model with new CPV • Quantify theor uncertainties Currents Links CP violation in Higgs and baryon sectors Quantum Transport Equations

  17. M1 0 -mZ cosb sinqW mZ cosb cosqW T ~TEW : scattering of H,W from background field MN = ~ ~ T ~ TEW mZ sinb sinqW M2 -mZ sinb sinqW 0 CPV 0 -m -mZ cosb sinqW mZ cosb cosqW -m T << TEW : mixing of H,W to c+, c0 mZ sinb sinqW -mZ sinb sinqW 0 ~ ~ ~ ~ M2 MC = m Illustrative Study: MSSM Chargino Mass Matrix Neutralino Mass Matrix Resonant CPV: M1,2 ~ m

  18. Higgsinos Squarks Impt to compute both num and den consistently Baryon Number: MSSM

  19. CP violation Relaxation Huet & Nelson Resonant CPV & Relaxation

  20. tL tR tL our GY previous GY g H Cirigliano, Lee, R-M, Tulin Joyce, Prokopec, Turok m Baryon Number & GY

  21. Small tannegligible Yb, effects tan=20: impt Yb, effects Canceling t,b (s)quark contributions Enhanced light stau contributions Small tan : nleft=5Q+4T Baryogenesis: tan  effects Transport, Spectrum, & EDMs + SUSY Chung,Garbrecht, R-M, Tulin: 0808.1144

  22. Weak Scale Baryogenesis • B violation • C & CP violation • Nonequilibrium dynamics Topological transitions Broken phase 1st order phase transition Elementary particle EDMs: N>>1 Sakharov, 1967 Many-body EDMs: • Is it viable? • Can experiment constrain it? • How reliably can we compute it? Engel,Flambaum, Haxton, Henley, Khriplovich,Liu, R-M Baryogenesis: New Electroweak Physics 90’s: Cohen, Kaplan, NelsonJoyce, Prokopec, Turok Unbroken phase CP Violation Theoretical Issues: Strength of phase transition (Higgs sector) Bubble dynamics (expansion rate) Transport at phase boundary (non-eq QFT) EDMs: many-body physics & QCD

  23. QCD QCD QCD EDMs: Complementary Searches Improvements of 102 to 103 Electron Neutron Neutral Atoms Deuteron

  24. mN=2.2 GeV Schiff Screening Improvements of 102 to 103 Electron ChPT for dn: van Kolck et al Atomic effect from nuclear finite size: Schiff moment Hadronic couplings Neutron EDM from LQCD: Nuclear Schiff Moment Pospelov et al: QCD QCD QCD Nuclear EDM: Screened in atoms • Two approaches: • Expand in q & average over topological sectors (Blum et al, Shintani et al) • Compute DE for spin up/down nucleon in background Efield (Shintani et al) PCAC + had models & QCD SR QCD SR (Pospelov et al) EDMs: Theory Neutron Neutral Atoms Deuteron

  25. Liu et al: New formulation of Schiff operator New nuclear calc’s needed ! + … Dominant in nuclei & atoms Nuclear & hadron structure ! Schiff Moment in 199Hg Engel & de Jesus: Reduced isoscalar sensitivity ( qQCD ) EDMs & Schiff Moments One-loop EDM: q, l, n… Chromo-EDM: q, n…

  26. T ~ TEW Future de dn dA Cirigliano, Lee, Tulin, R-M Resonant Non-resonant One Loop EDMs & Baryogenesis

  27. Dominant in nuclei & atoms EDMs in SUSY One-loop EDM: q, l, n… Chromo-EDM: q, n…

  28. Decouple in large limit Dominant in nuclei & atoms Two-loop EDM only: no chromo-EDM Weinberg: small matrix el’s EDMs in SUSY One-loop EDM: q, l, n… Chromo-EDM: q, n…

  29. Baryogenesis | sin fm | > 0.02 | de , dn | > 10-28 e-cm Mc < 1 TeV LEP II Exclusion Two loop de Cirigliano, Profumo, R-M SUGRA: M2 ~ 2M1 AMSB: M1 ~ 3M2 EDM constraints & SUSY CPV

  30. baryogenesis Prospective dn LHC reach LEP II excl Present de Baryogenesis: EDMs & Colliders Cirigliano, Profumo, R-M

  31. Assumes Wc ~ WCDM Cirigliano, Profumo, R-M Dark Matter: Future Experiments

  32. mA=300 GeV, =300 GeV, M2=2M1=290 GeV WH Loops dominate for neutron & comparable to H, A for electron EDMs in SUSY: Full Two-Loop Higgs Boson Masses Li, Profumo, R-M: 0608.2693

  33. EDMs in SUSY: Full Two-Loop Higgs Boson Masses Stronger limits on CPV for light Higgses & large tan

  34. Baryogenesis: EDMs & Colliders Higgs Boson Masses Examples w/ tan=20, mstop = 150 GeV: mA=1 TeV, sin =0.2; mA=1 TeV, sin =0.05 Stronger limits on CPV for light Higgses & large tan RH sbottom and stau masses correlated

  35. Baryogenesis: EDMs & Colliders Higgsino & Gaugino Mases Larger mA: EDM contours & EWB regions contract

  36. Arg(M1b*) = Arg(M2b*) / Weak dependence of de , dn on Arg(M1b*) Baryogenesis: EDMs & Colliders Res  EWB not compatible with dn Res & non-res  EWB compatible with future dn , light mA, & moderate tan

  37. Weak Scale Baryogenesis • B violation • C & CP violation • Nonequilibrium dynamics Topological transitions Broken phase 1st order phase transition More Higgs? Sakharov, 1967 Ando,Barger, Langacker,McCaskey,O.Connell,Profumo, R-M, Shaugnessy, Tulin, Wise • Is it viable? • Can experiment constrain it? • How reliably can we compute it? Baryogenesis: New Electroweak Physics 90’s: Cohen, Kaplan, NelsonJoyce, Prokopec, Turok Unbroken phase CP Violation Theoretical Issues: Strength of phase transition (Higgs sector) Bubble dynamics (expansion rate) Transport at phase boundary (non-eq QFT) EDMs: many-body physics & QCD

  38. Light RH stop w/ special Need 1st order 2nd order So that Gsphaleron is not too fast Increasing mh Computed ESM: mH < 40 GeV Stop loops in VEff mh>114.4 GeV EMSSM ~ 10 ESM :mH < 120 GeV or ~ 90 GeV (SUSY) Electroweak Phase Transition & Higgs LEP EWWG

  39. sin2q Need 1st order 2nd order Non-doublet Higgs (w / wo SUSY) • Can an augmented Higgs sector • Generate a strong 1st order EWPT ? • Allow for a heavier SM-like Higgs than in the MSSM ? • Alleviate the tension between direct Higgs search bounds and the EWPO ? • Be discovered at the LHC ? • Can its necessary characteristic probed at the LHC and a future e+e- collider ? So that Gsphaleron is not too fast Mixing Decay Increasing mH Computed ESM: mH < 40 GeV mh>114.4 GeV or ~ 90 GeV (SUSY) Electroweak Phase Transition & Higgs LEP EWWG

  40. Reduced SM Higgs branching ratios mH B.R. reduction Need 1st order 2nd order Non-doublet Higgs (w / wo SUSY) Unusual final states So that Gsphaleron is not too fast O’Connell, R-M, Wise Mixing Decay Increasing mH Computed ESM: mH < 40 GeV mh>114.4 GeV or ~ 90 GeV (SUSY) Electroweak Phase Transition & Higgs LEP EWWG

  41. Simplest extension of the SM scalar sector: add one real scalar S H-S Mixing H1 -> H2H2 • Goal: identify generic features of models with extended scalar sectors that give a strong, 1st order EWPT • Determine low-energy phenomenology (Higgs studies, precision ewk) • Address CPV with a different mechanism Independent Parameters: v0, x0, l0, a1, a2, b3, b4 The Simplest Extension Model

  42. Stable S (dark matter?) • Tree-level Z2 symmetry: a1=b3=0 to prevent s-h mixing and one-loop s hh • x0 =0 to prevent h-s mixing Mass matrix The Simplest Extension, Cont’d

  43. What is the pattern of symmetry breaking ? • What are conditions on the couplings in V(H,S) so that <H0>/T > 1 at TC ? • Compute Veff ( f, a, T ) • Minimize w.r.t f , a • Find TC • Evaluate v(TC )/TC ~ cos a(TC) f(TC )/TC CylindricalCo-ordinates Finite Temperature Potential

  44. Analytic Numerical Analytic Finite Temperature Potential Potential Conditions

  45. Increase e Large e < 0 Reduce l Nonzero V0 Electroweak Symmetry Breaking Strong first order EWPT Potential parameters Small ac limit

  46. x0 > 0 occurs readily Light: all models Black: LEP allowed Electroweak Symmetry Breaking Strong first order EWPT a1<0, a2 either sign a1=b3= 0, a2 < 0

  47. ILC: H’strahlung LHC exotic final states: 4b-jets, gg + 2 b-jets… LHC: reduced BR(h SM) m2 > 2 m1 m1 > 2 m2 EWPO compatible Phenomenology Colliders EWPO: favors light SM-like scalar

  48. LHC: reduced BR(h SM) m1 > 2 m2 Small q: Phenomenology Colliders Z2 Symmetry

  49. In progress… Controls CDM& EWPT DM mass No domain walls Key features for EWPT & DM: Softly broken global U(1) Closes under renormalization SSB leading to two fields: S that mixes w/ h and A is stable (DM) Complex Singlet: EWB & DM? Barger, Langacker, McCaskey, R-M Shaugnessy

  50. In progress… Complex Singlet: EWB & DM? Barger, Langacker, McCaskey, R-M Shaugnessy 2 controls CDM& EWPT

More Related