Guomin Wang gmwang@niaot.ac 2011-9-16 Nanjing Institute of Astronomical Optics & Technology - PowerPoint PPT Presentation

marika
guomin wang gmwang@niaot ac cn 2011 9 16 nanjing institute of astronomical optics technology n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Guomin Wang gmwang@niaot.ac 2011-9-16 Nanjing Institute of Astronomical Optics & Technology PowerPoint Presentation
Download Presentation
Guomin Wang gmwang@niaot.ac 2011-9-16 Nanjing Institute of Astronomical Optics & Technology

Loading in 2 Seconds...

play fullscreen
1 / 50
Download Presentation
Guomin Wang gmwang@niaot.ac 2011-9-16 Nanjing Institute of Astronomical Optics & Technology
76 Views
Download Presentation

Guomin Wang gmwang@niaot.ac 2011-9-16 Nanjing Institute of Astronomical Optics & Technology

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Chinese SONG progress and its design introduction Guomin Wang gmwang@niaot.ac.cn 2011-9-16 Nanjing Institute of Astronomical Optics & Technology SONG 4th Workshop College of Charleston

  2. Outline: • Progress introduction • Telescope design introduction

  3. PROGRESS INTRODUCTION

  4. August 13, 2010: Finished the PDR

  5. December 25, 2010: Finished the CDR

  6. Now, we are… Structure constructing

  7. Now, we are… Mirrors material test report from Russia LZOS Preparing mirror fabrication

  8. Large bearing manufacturing Delivery time: 4 months Azimuth bearing φ680×φ880 × 80

  9. Large bearing manufacturing Delivery time: 4 months Altitude bearing φ240×φ320 × 38

  10. Preparing contract for long-term elements, such as . . . Encoders Torque motors

  11. Telescope schedule

  12. TELESCOPE DESIGN INTRODUCTION

  13. Cassegrain system; • M1: paraboloid, 1m clear aperture, Zeodur material, active support and close-loop controled through S-H; • M2: hyperboloid, fused silica material, active positioned by 5-DOF unit; • M3: flat mirror, Zeodur material, 180°turn to direct the light to different Nasmyth platform; • System ratio: F/36.7; General requirements

  14. Image quality: 80% energy encircled in 0.3″ @ lucky imaging focus; • Nasmyth focus: VIS camera (450 - 650nm), RED camera (650 - 1000nm), Focus monitoring camera (< 450nm), auxiliary focus; • FOV @ Nasmyth: R32.52″; • Coudé focus: spectrograph (480 - 680nm); • FOV @ Coudé: 10″; • ADC: doublet prism; • Optical derotator: three - mirror General requirements

  15. Range of azimuth: 0 º ~ ±220º; • Range of altitude: 10 º ~ 89º • Max. acceleration: 2 º/sec2 ; • Max. pointing speed: 20 º/sec; • Blind spot: 2 º (diameter); • Tracking accuracy: RMS 0.3″ , 90s, no guiding; • Pointing accuracy: RMS 5″, 70 º ≥ ZD ≥1 º; • Repeat pointing accuracy: ≤ RMS 1″, 70 º ≥ ZD ≥1 º; • First frequency: large than 8 Hz; General requirements

  16. General view

  17. F/36.7 layout

  18. F/36.7 parameters

  19. F/36.7 imaging quality after ADC Spot diagram of VIS @ ZD = 5 °

  20. F/36.7 imaging quality after ADC Spot diagram of VIS @ ZD = 45 °

  21. F/36.7 imaging quality after ADC Spot diagram of VIS @ ZD = 75 °

  22. F/36.7 imaging quality after ADC Spot diagram of RED @ ZD = 5 °

  23. F/36.7 imaging quality after ADC Spot diagram of RED @ ZD = 45 °

  24. F/36.7 imaging quality after ADC Spot diagram of RED @ ZD = 75 °

  25. Nasmyth optical design To Coudé From telescope

  26. Nasmyth structure

  27. Coudé optical design From telescope

  28. Coudé structure

  29. Optical elements list

  30. Constrained the 8 fixed anchor bolts; • Applied 3.5 t on the bearing place to simulate the above weight; • Apply 1g on the structure; • Apply 700N on the place of 1373mm from the bearing to simulate the wind force at 15 m/s; Basement Structure Max. stress: 49.92 Mpa Max. deformation: 0.022 mm

  31. Table 2-1 Parameeters of iron pad Levelness adjustment

  32. Azimuth bearing

  33. Azimuth encoder

  34. Azimuth motor • Friction torque:67.5N.m; • Inertial torque: 50N.m; • Wind torque: 139N.m; Swiss Etel Company: TMB0450-100; Rated torque: 561Nm; Rated current: 11.3A;

  35. Constrain nodes connecting to bearing; • Add 1180N on top surface of center section to simulate the above weight; • Add 5390N on the down surface to simulate the down weight; • Add 1g to the structure; • Apply 400N at the place of 149.5mm above center section to simulate the wind force; Max. stress: 12.64 Mpa

  36. M1 support • ¢1010mm, thickness 45mm, center hole 65mm, flat bottom; • Axial supporting: • Fixed supporting: 3; • Pneumatic active supporting: 33 (6+9+18); • Lateral supporting: 10 counterweight level; R1 = 151.72mm, F1 = 28.664N ; R2 = 296.5mm, F2=31.183N; R3 = 449.12mm, F3=36.775N;

  37. Mirror cell calculation Max. deformation: 0.58 um Max. stress: 2.9 MPa

  38. Force actuatorDiaphragm Air Cylinder(Bellofram)

  39. Electro- pneumatic regulator SMC Regulator

  40. Force sensor

  41. M2 positioning unit

  42. M1-M2 offset calculation Uz-altitute angle Uy-altitute angle Rotx-altitute angle

  43. Frequency calculation

  44. Control architecture

  45. TCS configuration Master Computer (Advantech Industrial PC) Slave Computer(UMAC)

  46. M2 control configuration

  47. Communication

  48. 3-D Of SONG telescope

  49. THANK YOU !!!