1 / 31

Laser Laboratory (-ies)

Laser Laboratory (-ies). Peter Müller. Oven: 225 Ra (+Ba). Transverse cooling. Zeeman Slower. EDM probe. Optical dipole trap. Search for EDM of 225 Ra. Advantages: Large enhancement: EDM(Ra) / EDM(Hg) ~ 200 – 2000 Efficient use of 225 Ra atoms

marchie
Download Presentation

Laser Laboratory (-ies)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Laser Laboratory (-ies) Peter Müller

  2. Oven: 225Ra (+Ba) Transverse cooling Zeeman Slower EDM probe Optical dipole trap Search for EDM of 225Ra • Advantages: • Large enhancement: • EDM(Ra) / EDM(Hg) ~ 200 – 2000 • Efficient use of 225Ra atoms • High electric field (> 100 kV/cm) • Long coherence times (~ 100 s) • Negligible “v x E” systematic effect

  3. Search forEDM of 225Ra ~ 1x104 226Ra atoms 2 mm gap > 100 kV/cm • Status: • Trapped 225Ra and 226Ra • EDM probing region constructed • 10-10 Torr, 100 kV/cm, 10 mG • Next steps: • Dipole trap transfer • Optical pumping and detection

  4. 81Kr / 39Ar Atom Trap Trace Analysis • Krypton-81 : • cosmogenic • half-life = 230 ka • 81Kr/Kr = 1 x 10-12 • Argon-39 : • cosmogenic • half-life = 270 a • 39Ar/Ar = 8 x 10-16 • Dark Matter Searches : • LAr detectors (WARP, DEAP/CLEAN) • 39Ar major background • search for old / depleted Argon • Radio-Argon Dating : • 50 – 1000 year range • study ocean and groundwater • previously with LLC and AMS WIMP Argon Programme

  5. Atom Trapping & Nuclear Charge Radii of 6,8He Atom Trap Setup 389 nm 1083 nm 8He Spectroscopy Singleatomsignal He-6: L.-B. Wang et al., PRL 93, 142501 (2004)He-8: P. Mueller et al., PRL 99, 252501 (2007)

  6. Simulated time-of-flight signal New Physics Standard Model Beta-Decay Study with Laser Trapped 6He • 6He trapping rate: 1104 s-1, • 2105 coincidence events in 15 min: da = ± 0.008 • 1 week: da/a = 0.1% • 6He yields: • ATLAS: 1107 s-1 • CENPA: ~1109 s-1 • SARAF / SPIRAL2: ~11012 s-1

  7. Isotopic Menu for Laser Spectroscopy Low-energyyield, s-1 > 106 105 - 106 104 - 105 103 - 104 102 - 103 10 - 102 1 - 10 < 1 • Isotope shifts -> charge radii, deformations • Hyperfine structure -> moments (dipole,…) -> spin

  8. AC Laser Enclosure (~ 6’ x 10’) HEPA Laser Table (~ 3’ x 7’) Tape Station Ion Trap Collinear Beamline Laser Lab Layout @ CARIBU Cf-252 source 80 mCi -> 1Ci Gas catcher High-resolution mass separator dm/m > 1/20000 RF Cooler & Buncher … starting in fall 2010

  9. PMT / EMCCD Linear Paul Trap for Spectroscopy black, conductive coated electrodes ITO coated optics Ba+ • open geometry, linear Paul trap -> large light collection efficiency • buffer gas w. LN2 cooling, -> good spectroscopic resolution, quenching of dark states • -> few (single ?) ion detection sensitivity

  10. Ba Isotopes Ion Trap Spectroscopy at CARIBU Linear Paul trap for spectroscopy • Initially with neutron-rich Ba+ • Isotope shift + moments (HFS) • Use RF cooler / buncher & transfer line To investigate: • optimized trap geometry and detectionsystem • Buffer gas cooling + quenching (with H2) • Cooling of trap with LN2 Future: • other CARIBU beams • High mass: Pr, Nd, Eu, … • Low mass: Y, Zr, Nb, Sr, … • Yb+ -> No+ with ATLAS Upgrade

  11. Collinear Laser Spectroscopy • High spectroscopic resolution • High sensitivity through bunched beams • Neutral atoms w/charge-exchange • Measure for the first time: Rh, Ru, … • Extend isotopic chains on: Sn, Mo, Nb, … Other opportunities: • Laser polarized beams, e.g., Kr, Xe … • Laser polarization in matrix (solid noble gasses) • Resonance ionization to suppress isobars/isomers • … … 2011

  12. Isotopic Menu – “Low Mass” MOT Collinear N = 50 Refractoryelements N = 82

  13. Menu of Isotopes – “High Mass” MOT Collinear N = 82

  14. Ion beam Line for Laser Spec Setup StableSource@ +10/3 kV + 2.9 kV Fluor. Det. 50 kV X/Y Defl. Charge X Lens PDT 3 kV 3/10 kV 90 -5 kV PostAccel. 15 kV 9 ft

  15. Discussion Points • Need 1+ charge state for “heavy” isotopes • Operate buncher with neon

  16. Laser Spectroscopy of Refractory Elements Laser Spectroscopy of Cooled Zirconium Fission Fragments, P. Campbell et al., PRL 89, 082501 (2002) 101Zr • Measured 96–102Zr with yields > 500 s-1 -> @ CARIBU: 106Zr ~ 1x104 s-1 • N=60 shape transition for higher Z: Nb, Mo … -> 109Mo, 112Nb I = 3/2 Charge radius vs. deformation:

  17. t1/2=0.808 sec 0+ 6He b- E0=3.5097 MeV 1+ 100% 6Li Beta-Neutrino Correlation in the Decay of 6He Best experimental limit: a = - 0.3343 ± 0.0030 21Na Johnson et al., Phys. Rev. (1963)

  18. Thank You! 8He CollaborationK. Bailey, R. J. Holt, R. V. F. Janssens, Z.-T. Lu, P.M., T. P. O'Connor, I. SulaiPhysics Division, Argonne National Laboratory, USAM.-G. Saint Laurent, J.-Ch. Thomas, A.C.C. Villari, J.A. Alcantara-Nunez, R. Alvez-Conde, M. Dubois, C. Eleon, G. Gaubert, N. LecesneGANIL, Caen, FranceG. W. F. Drake - University of Windsor, Windsor, CanadaL.-B. Wang – Los Alamos National Laboratory, USA Argon Atom Trappers www.phy.anl.gov/mep/atta/

  19. Barium Ion Spectroscopy for EXO EXO Collaboration With He as buffer gas and repumping

  20. Collinear Laser Spectroscopy • Well adapted to on-line mass separators • Reduction of Doppler width: -> high resolution, high efficiency • Need >1000 ions/s for “good cases” with fluorescence detection • Higher efficiency with ion detection or decay counting • Charge exchange: neutral atoms + metastable states Ion beam ~ 50 keV HV

  21. Barium Quench Rate PRA 41, 2621 (1990)

  22. GFMC – Binding Energy vs. Charge Radius

  23. Atomic Energy Levels of Helium He energy level diagram 3 3P0,1,2 He discharge 3.2 eV389 nm 2 3P0,1,2 1.2 eV1083 nm 2 3S1 metastable 19.8 eV,e-collision in discharge 1 1S0

  24. CARIBU Layout Cf-252 source 80 mCi -> 1Ci Gas catcher High-resolution mass separator dm/m > 1/20000 Low Energy Experiments RF Cooler & Buncher Charge breeder

  25. Magneto-Optical Trap (MOT) • Cooling: Temperature~ 1 mK, • avoid Doppler shift / width • Long observation time: 100 ms • Spatial confinement: trap size < 1 mm • single atom sensitivity • Selectivity:no isotopic / isobaric interference Laser Cooling and Trapping Technical challenges: • Short lifetime, small samples (<106 atoms/s available) • Low metastable population efficiency (~ one in 100.000) • Precision requirement (100 kHz = Doppler shift @ 4 cm/s )

  26. GFMC – What happens to the a-core? AV18 + IL2 GFMC proton-proton distributions

  27. Collinear Laser Spectroscopy with Cold & Bunched Beams A. Nieminen et al., PRL 88, 094801 (2002) 174Hf Voltage, V • gate on ion bunch • reduce ion energy spread • increase S/N by ~ 102

  28. Laser Spectroscopy in Linear Paul Trap

  29. Laser Spectroscopy of Hf in Spherical Paul Trap 340 nm • H2 buffer gas • RF syncronized excitation and detection -> 1 GHz resolution W.Z. Zhao et al., Hyperf.Int.108,483 (1997)

More Related