1 / 37

20.2 Fundamentals

Chapter 20 Fundamentals of Machining/Orthogonal Machining (Part I Review) EIN 3390 Manufacturing Processes Spring, 2012. Variables in Processes of Metal Cutting: Machine tool selected to perform the processes Cutting tool (geometry and material) Properties and parameters of workpiece

Download Presentation

20.2 Fundamentals

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 20Fundamentals of Machining/Orthogonal Machining(Part I Review) EIN 3390 Manufacturing ProcessesSpring, 2012

  2. Variables in Processes of Metal Cutting: • Machine tool selected to perform the processes • Cutting tool (geometry and material) • Properties and parameters of workpiece • Cutting parameters (speed, feed, depth of cut) • Workpiece holding devices (fixture or jigs) 20.2 Fundamentals

  3. FIGURE 20-1 The fundamental inputs and outputs to machining processes.

  4. 7 basic chip formation processes: • shaping, • turning, • milling, • drilling, • sawing, • broaching, • grinding (abrasive) • Single point include: turning, facing, boring, shaping, planning, fly cutter milling, some modes of deep hole drilling and other variations of lathe operations such as cutoff, recessing plunge or form turning. • The rest of the machining processes are multiple points and include drilling, milling, broaching, sawing, filing and many forms of abrasive machining. 20.2 Fundamentals

  5. FIGURE 20-2 The seven basic machining processes used in chip formation.

  6. Responsibilities of Engineers • Design (with Material) engineer: • determine geometry and materials of products to meet functional requirements • Manufacturing engineer based on material decision: • select machine tool • select cutting-tool materials • select workholder parameters, • select cutting parameters 20.2 Fundamentals

  7. Cutting Parameters • Speed (V): the primary cutting motion, which relates the velocity of the cutting tool relative to the workpiece. • For turning: V = p(D1 Ns) / 12 • where, V – feet per min, Ns – revolution per min (rpm), D1 diameter of surface of workpiece, in. • Feed (fr): amount of material removed per revolution or per pass of the tool over the workpiece. In turning, feed is in inches per revolution, and the tool feeds parallel to the rotational axis of the workpiece. • Depth of Cut (DOC): in turning, it is the distance that the tool is plunged into the surface. • DOC = 0.5(D1 – D2) = d 20.2 Fundamentals

  8. FIGURE 20-3 Turning a cylindrical workpiece on a lathe requires you to select the cutting speed, feed, and depth of cut.

  9. Cutting Tool is • a most critical component • used to cut the work piece • selected before actual values for speed and feeds are determined. • Figure 20-4 gives starting values of cutting speed, feed for a given depth of cut, a given work material, and a given process (turning). • Speed decreases as DOC or feed increase • Cutting speed increases with carbide and coated- carbide tool material. 20.2 Fundamentals

  10. (for workpiece) AISI for “in” ISO for “mm” FIGURE 20-4 Examples of a table for selection of speed and feed for turning. (Source: Metcut’sMachinability Data Handbook.)

  11. (for workpiece) AISI for “in” ISO for “mm” FIGURE 20-4 Examples of a table for selection of speed and feed for turning. (Source: Metcut’sMachinability Data Handbook.)

  12. To process different metals, the input parameters to the machine tools must be determined. • For the lathe, the input parameters are DOC, feed, and the rpm value of the spindle. • Ns = 12V / (p D1) = ~ 3.8 V/ D1 • Most tables are arranged according to the process being used, the material being machined, the hardness, and the cutting-tool material. • The table in Figure 20-4 is used only for solving turning problems in the book. 20.2 Fundamentals

  13. DOC is determined by the amount of metal removed per pass. • Roughing cuts are heavier than finishing cuts in terms of DOC and feed and are run at a lower surface speed. • Once cutting speed V has been selected, the next step is to determine the spindle rpm, Ns. • Use V, fr and DOC to estimate the metal removal rate for the process, or MRR. • MRR = ~ 12V fr d • where d is DOC (depth of cutt). • MRR value is ranged from 0.1 to 600 in3/min. 20.2 Fundamentals

  14. MRR can be used to estimate horsepower needed to perform cut. • Another form of MRR is the ratio between the volume of metal removed and the time needed to remove it. • MRR = (volume of cut)/Tm • Where Tm – cutting time in min. For turning, • Tm = (L + allowance)/ (fr Ns) • where L – length of the cut. An allowance is usually added to L to allow the tool to enter and exit the cut. • MRR and Tmare commonly referred to as shop equations and are fundamental as the processes. 20.2 Fundamentals

  15. One of the most common is turning: • workpiece is rotated and cutting tool removes material as it moves to the left after setting a depth of cut. • A chip is produced which moves up the face of the tool. 20.2 Fundamentals

  16. FIGURE 20-5 Relationship of speed, feed, and depth of cut in turning, boring, facing, and cutoff operations typically done on a lathe.

  17. Milling: • A multiple-tooth process. • Two feeds: the amount of metal an individual tooth removes, called the feed per tooth ft, and the rate at which the table translates pass the rotating tool, called the table feed rate fmin inch per min. • fm = ft n Ns • where n – the number of teeth in a cutter, Ns – the rpm value of the cutter. • Standard tables of speeds and feeds for milling provide values for the recommended cutting speeds and feeds and feeds per tooth, fr. 20.2 Fundamentals

  18. FIGURE 20-6 Basics of milling processes (slab, face, and end milling) including equations for cutting time and metal removal rate (MRR).

  19. FIGURE 20-7 Basics of the drilling (hole-making) processes, including equations for cutting time and metal removal rate (MRR).

  20. FIGURE 20-9 (a) Basics of the shaping process, including equations for cutting time (Tm ) and metal removal rate (MRR). (b) The relationship of the crank rpm Ns to the cutting velocity V.

  21. FIGURE 20-10 Operations and machines used for machining cylindrical surfaces.

  22. FIGURE 20-10 Operations and machines used for machining cylindrical surfaces.

  23. FIGURE 20-10 Operations and machines used for machining cylindrical surfaces.

  24. FIGURE 20-10 Operations and machines used for machining cylindrical surfaces.

  25. FIGURE 20-11 Operations and machines used to generate flat surfaces.

  26. FIGURE 20-11 Operations and machines used to generate flat surfaces.

  27. Power requirements are important for proper machine tool selection. • Cutting force data is used to: • properly design machine tools to maintain desired tolerances. • determine if the workpiece can withstand cutting forces without distortion. 20.3 Energy and Power in Machining

  28. Primary cutting force Fc: acts in the direction of the cutting velocity vector. Generally the largest force and accounts for 99% of the power required by the process. • Feed Force Ff :acts in the direction of tool feed. The force is usually about 50% of Fc but accounts for only a small percentage of the power required because feed rates are small compared to cutting rate. • Radial or Thrust Force Fr :acts perpendicular to the machined surface. in the direction of tool feed. The force is typically about 50% ofFf and contributes very little to the power required because velocity in the radial direction is negligible. Cutting Forces and Power

  29. FIGURE 20-12 Oblique machining has three measurable components of forces acting on the tool. The forces vary with speed, depth of cut, and feed.

  30. FIGURE 20-12 Oblique machining has three measurable components of forces acting on the tool. The forces vary with speed, depth of cut, and feed.

  31. Power = Force x Velocity P = Fc. V (ft-lb/min) Horsepower at spindle of machine is: hp = (FcV) / 33,000 Unit, or specific, horsepower HPs: HPs = hp / (MRR) (hp/in.3/min) In turning, MRR =~ 12VFrd, then HPs = Fc / 396,000Frd This is approximate power needed at the spindle to remove a cubic inch of metal per minute. Cutting Forces and Power

  32. Specific Power Used to estimate motor horsepower required to perform a machining operation for a given material. Motor horsepower HPm HPm = [HPs. MRR . (CF)]/E Where E – about 0.8, efficiency of machine to overcome friction and inertia in machine and drive moving parts; MRR – maximum value is usually used; CF – about 1.25, correction factor, used to account for variation in cutting speed, feed, and rake angle. Cutting Forces and Power

  33. Primary cutting force Fc: Fc =~ [HPs. MRR . 33,000]/V Used in analysis of deflection and vibration problems in machining and in design of workholding devices. In general, increasing the speed, feed, depth of cut, will increase power required. In general, increasing the speed doesn’t increase the cutting force Fc. Speed has strong effect on tool life. Cutting Forces and Power

  34. Considering MRR =~ 12Vfrd, then dmax =~ (HPm. E)/[12 . HPs V Fr (CF)] Total specific energy (cutting stiffness) U: U = (FcV)/(V fr d) = Fc/(fr . d) =Ks (turning) Cutting Forces and Power

More Related