140 likes | 231 Views
This study examines the BH mass of nearby QSOs using the bulge luminosity and virial methods. The authors M. Labita, A. Treves, R. Falomo, and M. Uslenghi compare the virial method with the luminosity method in determining BH masses. The research explores elliptical galaxies, SMBHs, AGN, reverberation mapping, BRLR, nuclear luminosity, host galaxy properties, and host galaxy-SMBH coevolution. The study analyzes global properties and coevolution of host galaxies and SMBHs, employing the virial method and host galaxy luminosity method on a sample of 30 QSOs. The analysis includes 18 RLQs and 12 RQQs with redshifts ranging from 0.1 to 0.6. The study investigates FWHM distributions, BH mass comparisons, inclination angles, and Kolmogorov-Smirnov tests for QSOs. The main results show a correlation between MBH and Lbulge that can be extrapolated to z ~ 0.4, suggesting a disc-like BLR geometry with specific inclination angles.
E N D
The BH mass of nearby QSOs A comparison of the bulge luminosity and virial methods M. Labita, A. Treves Università dell’Insubria, Como, Italy R. Falomo INAF, Osservatorio Astronomico di Padova, Italy M. Uslenghi INAF-IASF, Milano, Italy
THE BH MASS OF NEARBY QSOs – M. Labita, A. Treves, R. Falomo, M. Uslenghi The virial method Elliptical galaxies SMBHs
THE BH MASS OF NEARBY QSOs – M. Labita, A. Treves, R. Falomo, M. Uslenghi The virial method (AGN) RBLR: reverberation mapping
THE BH MASS OF NEARBY QSOs – M. Labita, A. Treves, R. Falomo, M. Uslenghi The virial method (3) BRL radius Nuclear luminosity Pian E., Falomo R., Treves A.2005, MNRAS, 361, 919
THE BH MASS OF NEARBY QSOs – M. Labita, A. Treves, R. Falomo, M. Uslenghi MBH and global propertiesof the host galaxy Locally: • Velocity dispersion s; • Galaxy Luminosity: Coevolution of host galaxies and SMBHs
THE BH MASS OF NEARBY QSOs – M. Labita, A. Treves, R. Falomo, M. Uslenghi MBH for close-by quasars • Virial method • Host galaxy luminosity method Sample: HST WFPC2 images HST FOS spectra
THE BH MASS OF NEARBY QSOs – M. Labita, A. Treves, R. Falomo, M. Uslenghi The sample 30 QSOs • 18 RLQs • 12 RQQs 0.1< z <0.6
THE BH MASS OF NEARBY QSOs – M. Labita, A. Treves, R. Falomo, M. Uslenghi The spectra Continuum subtracted rest-frame spectra C IV emission lines: FWHM determination
f=√3/2 THE BH MASS OF NEARBY QSOs – M. Labita, A. Treves, R. Falomo, M. Uslenghi BH mass comparison f=1.3
THE BH MASS OF NEARBY QSOs – M. Labita, A. Treves, R. Falomo, M. Uslenghi Main results • MBH – Lbulgecorrelation obtained locally can be extrapolated to z ~ 0.4 • f ~ 1.3 i.e. disc-like BLR geometry with inclination angles 12° < i < 48°
THE BH MASS OF NEARBY QSOs – M. Labita, A. Treves, R. Falomo, M. Uslenghi FWHM distribution _____ observed FWHM cumulative distribution - - - - - expected cumulative distribution in a disc-like BLR geometry picture
THE BH MASS OF NEARBY QSOs – M. Labita, A. Treves, R. Falomo, M. Uslenghi QSOs inclination angles Kolmogorov – Smirnov test of compatibility: 12° < i < 48°
THE BH MASS OF NEARBY QSOs – M. Labita, A. Treves, R. Falomo, M. Uslenghi QSOs at high z From Falomo et al. 2004
THE BH MASS OF NEARBY QSOs – M. Labita, A. Treves, R. Falomo, M. Uslenghi QSOs at high z:spectra ESO 3.6m + EFOSC2