1 / 30

Search for narrow six-quark states

Search for narrow six-quark states. L.V. Fil’kov, (1) V.L. Kashevarov, (1,2) M. Ostrick (2). (1) P.N. Lebedev Physical Institute , Moscow. (2) Institut fur Kernphysik, University of Mainz. EMIN - 2012. Supernarrow six-quark states. 6-quark state. nucleon. (dibaryon).

magee
Download Presentation

Search for narrow six-quark states

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Search for narrow six-quark states L.V. Fil’kov,(1) V.L. Kashevarov,(1,2) M. Ostrick(2) (1) P.N. Lebedev Physical Institute , Moscow (2) Institut fur Kernphysik, University of Mainz EMIN - 2012

  2. Supernarrow six-quark states 6-quark state nucleon (dibaryon) D N N G~ 10 100 MeV 6-quark states, decay of which into two nucleons is forbidden by the Pauli exclusion principle. M < 2mN + mpD → g + NN g + d * Wide dibaryons : G~ 10 100 MeV * Narrow dibaryons : G~ 1 1 MeV * Supernarrow dibaryons : G<< 1 keV GeV (-1)T+S P = +1

  3. A construction of an adequate QCD model. 2. Astrophysics: an evolution of compact stars. 3. Quark-gluon plasma: specific signals of a production of QGP with the big baryon dencity. Nuclear physics: a formation of SND-nuclei; a region stability of neutron-rich nuclei.

  4. 1. P.J.G. Mulders et al. (1980) MIT bag model: D(T=0; JP = 0─, 1─, 2─; M=2110 MeV), D(1; 1─; M=2200 MeV) M > 2mN + mpD p NN 2. V.B. Kopeliovich (1993) Chiral soliton model: D(T=1; JP = 1+; M ≃1940 MeV), D(0; 2+; M ≃1990 MeV) 3. T. Krupnovniskaset al. (2001) Canonically quantized biskyrmion model: M < 2mN + mp one dibaryon with J=T=0, two dibaryons with J=T=1 4. L.V. Fil’kov (2003) Mass formula for SND: T=1, J=1± M=1904 (J=1-), 1924 (1+), 1943 (1-), 1962 (1+), 1982 (1-), 2001 (1+)

  5. D(T=0, JP=0+ ), D(0, 0─), D(T=1, J =1+), D(1,1─) g N X = { d if T = 0 D 31S0 if T = 1 X N

  6. p1+d→p2+pX1 L.V. Fil’kov, V.L. Kashevarov, E.S. Konobeevskiet al. Phys. Rev. C61, 044004 (2000); Eur.Phys.J. A12, 369 (2001); INR (Moscow) MpX1: 1904±2, 1926±2, 1942±2 SD: 6.0 7.0 6.3 G < 5 MeV (experimental resolutions) if X1 = n→ MX1 = mn if X1 = g+ n→ MX1 mn Simulation of mass MX1 spectra gave: MX1 = 965, 987, 1003 MeV Experiment: MX1= 966±2, 986±2, 1003±2 X1= g + n

  7. pp   d1 pp A.S. Khrykin et al. Phys. Rev. C 64, 034002 (2001) Tp= 216 MeV, E  10 MeV, q= 900 • M=1956 MeV T=2 • Uppsala pp-bramsstralung data (H. Calen, et al., Phys. Lett. B427, 248 (1998)): upper limit  10 nb.

  8. p d  p pX p d  p dX1 Research Center for Nuclear Physics (Japan) H. Kuboki et al. Phys. Rev. C 74, 025203 (2006) 1. No resonance structure in the missing mass spectra of pX and dX1 was observed. 2. No resonance structure in missing mass spectra of X. (It is at variance also with the results of the work of B. Tatischeff et al. (Phys. Rev. Lett. 79, 601 (1997)) INR: beam intensity 0.1 nA RCNP: beam intensity (15 – 20) nA

  9. A. Cichocki, PhD (2003) B. Norum et al. (LEGS) Eg= 210 – 340 MeV Pg = 99% s = 25 – 14 nb

  10. SEARCH FOR NARROW SIX-QUARK STATES IN THE REACTIONS g d NN

  11. The energy and angular distributions of the nucleons from the decay of SNDs The distributions over the angle between the final nucleons and over the relative difference of energies of these nucleons M=1904 MeV M=1926 MeV M=1942 MeV M=1982 MeV

  12. The energy and angular distributions of the photons from the decay of SNDs M=1904 MeV M=1926 MeV M=1942 MeV M=1982 MeV

  13. Background

  14. gd→p- D(1,1-) , (b,c,d) for M=1904, 1942, 2000 MeV gd→p- D(1,1+ )

  15. gd→p+ D(1,1-) , (b,c,d) for M=1904, 1942, 2000 MeV gd→p+ D(1,1+ )

  16. GEANT simulation of SND

  17. GEANT simulation of p and n mass spectrum; (a) – without an influence of the detectors. (a) (b) (c)

  18.  d0 +  pnMAMI (Preliminary) V. Kashevarov, 8th Crystal Ball@MAMI Collaboration Meeting, Glasgo, March 27-29, 2006 MM(,0) – md (MeV) Red lines are SND peak positions from INR experiment

  19. Conclusion

  20. gd→p0 D(1,1+) , (b,c,d) for M=1904, 1942, 2000 MeV gd→p0 D(1,1-)

  21. The Two Arm Mass Spectrometer (TAMS). S0, S1, S2, and S3 are start detectors; F0, F1, F2, and F3 are stop DE detectors; D0 is a BGO detector; D1, D2, and D3 are full absorption E detectors.

  22. (a) – 33o, (b) – 35o , (c) – 37o

  23. GEANT simulation of p mass spectra.

  24. JLAB

  25. A. Cichocki, PhD (2003) B. Norum et al. (LEGS) Eg=210-340 MeV a= 90o Pg=99% s=25-14 nb

  26. A.Cichocki, PhD (2003) B. Norum et al. (LEGS) Eg=210-340 MeV a=90 Pg= 99% s=25 -14nb

More Related