1 / 38

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

Π.Μ.Σ. ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ. ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ. On the Minimax Approval Voting Rule Διπλωματική εργασία Ασημακόπουλος Ευάγγελος Επιβλέπων Καθηγητής Μαρκάκης Ευάγγελος. Τι θα ακούσετε στην ομιλία.

Download Presentation

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Π.Μ.Σ. ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ On the Minimax Approval Voting Rule Διπλωματική εργασία Ασημακόπουλος Ευάγγελος Επιβλέπων Καθηγητής Μαρκάκης Ευάγγελος

  2. Τι θα ακούσετε στην ομιλία • Τι είναι εκλογές, ποιες οι κατηγορίες των εκλογών και κατάταξη εκλογικών κανόνων. • Επιθυμητές ιδιότητες και παράδοξα εκλογικών κανόνων. • Επισκόπηση βιβλιογραφίας για συστήματα approval voting. • Την έρευνα μας στονεκλογικό κανόνα του minimaxapproval voting.

  3. Ορισμοί • Έστω ένα σύνολο οντοτήτων ή αντικειμένων το οποίο θα το ονομάσουμε υποψήφιοι. • Έστω ένα σύνολο οντοτήτωνή αντικειμένων με (τεχνητή) νοημοσύνη το οποίο θα το ονομάσουμε ψηφοφόροι. • Κάθε ψηφοφόρος επιλέγει (δείχνει προτίμηση σε) ένα υποσύνολο των υποψηφίων, το οποίο ονομάζεται ψήφος. • Ως εκλογικό σύστημα (εκλογές) ορίζουμε μία διαδικασία η οποία: • Καθορίζει τον τύπο των ψήφων • Επιλέγει με συνεπή τρόπο για κάθε σύνολο ψήφων ένα υποσύνολο των υποψηφίων (επιτροπή).

  4. Ιδιότητες ψήφων και εκλογικών συστημάτων • Κάθε ψήφος δεν είναι απαραίτητο ότι έχει τον ίδιο συντελεστή βαρύτητας. • Η ψήφος μπορεί να είναι διατεταγμένη. • Η ψήφος μπορεί να έχει συντελεστές βαρύτητας στους υποψηφίους. • Το εκλογικό σύστημα μπορεί να περιλαμβάνει έναν ή περισσότερους γύρους. • Η επιτροπή μπορεί να έχει σταθερό ή μεταβλητό αριθμό ατόμων.

  5. Κατηγορίες Εκλογών Οι εκλογές μπορούν να διαχωριστούν με βάση • Τους γύρους εκλογών (πόσες φορές θα επαναληφθεί η εκλογική διαδικασία). • Την ύπαρξη συνασπισμών. • Τις κατηγορίες των ψήφων (διάταξη, βαθμοί, σταυροί κλπ.) . • Την επιτροπή (μέγεθος, διάταξη, κλπ.) • …

  6. Ας παίξουμε ένα παιχνίδι • Ο πίνακας στην επόμενη διαφάνεια δείχνει τα αποτελέσματα μίας εκλογικής διαδικασίας με 12 ψηφοφόρους και 18 υποψηφίους. • Κάθε υποψήφιος μπορεί να επιλέξει όσους υποψήφιους επιθυμεί. • Κάθε υποψήφιος ψήφισε με γνώμονα το προσωπικό του συμφέρον. • Σκοπός μας είναι να επιλέξουμε μία επιτροπή από 6 υποψήφιους. • Πώς όμως θα τους επιλέξουμε; • Πείτε τη γνώμη σας. • Να θυμάστε δεν γνωρίζετε για ποιο θέμα ψηφίζουν και τι είναι οι υποψήφιοι

  7. Πιθανές απαντήσεις Ενδεικτικά μερικές επιτροπές • a, b, c, d, e, f (δίκαιο ως προς την επιτροπή – minisum) • a, b, c, i, j, k (δίκαιο ως προς τους ψηφοφόρους - minimax) • a, b, i, j, q, r (ίση εκπροσώπηση – όλοι έχουν ακριβώς 2 εκπροσώπους στην επιτροπή ) • a, b, c, i, j, q (αναλογική εκπροσώπηση – συνδυασμός των υπολοίπων)

  8. Κατηγοριοποίηση κανόνων εκλογών • Γενικά οι εκλογικοί κανόνες βελτιστοποιούν κάποιες αντικειμενικές συναρτήσεις. • Υπάρχουν εκλογικοί κανόνες που συνδυάζουν περισσότερα από 1 κριτήρια (πχ. αναλογική αντιπροσώπευση). • Δεν είναι πάντα δυνατό να μεγιστοποιήσουμε όλα τα κριτήρια, υπάρχουν συμβιβασμοί. • Τα κριτήρια: • Voters’ representation • Voters’ fairness. • Candidates’ fairness (Condorcet’s efficiency)

  9. Voter’s representation • Εκλογικοί κανόνες που έχουν ως στόχο όσο το δυνατόν μεγαλύτερη εκπροσώπηση των ψηφοφόρων στην επιτροπή. • Στην πράξη συνήθως χρησιμοποιούνται με τη χρήση πολιτικών συνδυασμών.

  10. Voters’ fairness • Εκλογικοί κανόνες οι οποίοι προσπαθούν να μεταχειριστούν όλους τους ψηφοφόρους δίκαια. Δηλαδή να μην υπάρχει κάποιος υποψήφιος ο οποίος να είναι περισσότερο αδικημένος (μικρότερη εκπροσώπηση από τους υπόλοιπους. • Σε κάποια εκλογικά συστήματα ταυτίζεται με το κριτήριο του Voters’ representation. • Από τους καλύτερους tie-breaking κανόνες σε περίπτωση ισοβαθμίας για άλλα κριτήρια. • Παραδείγματα σε αυτήν την κατηγορία είναι το κριτήριο Minimax και το κριτήριο SAV.

  11. Candidate Fairness (Condorcet’s efficiency) • Εκλογικοί κανόνες που έχουν ως προτεραιότητα να μην υπάρχει υποψήφιος ο οποίος να μην έχει εκλεγεί και να έχει μεγαλύτερη προτίμηση από το σύνολο των ψηφοφόρων (είτε έχοντας λάβει περισσότερες ψήφους, είτε να βρίσκεται σε καλύτερη σειρά) από κάποιον άλλο υποψήφιο ο οποίος όμως έχει εκλεγεί. • Παραδείγματα σε αυτήν την κατηγορία είναι το κριτήριο της πλειοψηφίας (Minisum) και το κριτήριο SAV. • Ονομάζεται και Condorcet’s efficiency από το Γάλλο φιλόσοφο και μαθηματικό Condorcet.

  12. Κατηγοριοποίηση αλγορίθμων εκλογών • Για να βρούμε το βέλτιστο σε κάθε εκλογικό κανόνα χρειαζόμαστε έναν αλγόριθμο. • Κάθε τέτοιος αλγόριθμος μπορεί να εξεταστεί από 4 διαφορετικές συνιστώσες. • Πολυπλοκότητα. • Λόγος προσέγγισης (Approximation ratio) ως προς βέλτιστο. • Truthfulness (SP, GSP, S-GSP) • Pareto efficient (δεν υπάρχει κάτι συνολικά καλύτερο για όλους τους ψηφοφόρους)

  13. Θεωρήματακαι Παράδοξα Πάρα πολλά impossibility theorems και παράδοξα. • Condorcet’s Paradox. • Gibbard–Satterthwaite theorem • Για οποιονδήποτε εκλογικό κανόνα όπου ψηφίζουμε με αυστηρή σειρά προτίμησης και έχουμε πάνω από 3 υποψήφιους και η επιτροπή έχει μέγεθος 1 ισχύει ένα από τα παρακάτω, υπό κάποιες λογικές προϋποθέσεις: • Υπάρχει κάποιος ψηφοφόρος (δικτάτορας) που η ψήφος του θα ορίσει το νικητή. • Ο εκλογικός κανόνας δεν είναι truthful (manipulation).

  14. Approval Voting (AV) • Εκλογικό σύστημα στο οποίο οι ψηφοφόροι είτε εγκρίνουν (approve) είτε δεν εγκρίνουν (disapprove) καθένα υποψήφιο. • Δεν υπάρχει περιορισμός πόσους υποψήφιους θα εγκρίνει (ή δεν θα εγκρίνει) ο κάθε ψηφοφόρος. • Εκλέγεται μόνο ένας υποψήφιος, εκείνος που έχει λάβει τις περισσότερες εγκρίσεις από τους ψηφοφόρους. • Προτάθηκε το 1978 από τους Brams και Fishburn ενώ το 1983 γράφτηκε το πρώτο σχετικό βιβλίο από τους ίδιους. • Είναι καλύτερο από το plurality vote καθώς δεν ευνοούνται οι δημοφιλέστεροι υποψήφιοι εξαιτίας των περιορισμών των ψήφων.

  15. Approval Voting Facts • Πρώτη γνωστή χρήση του AV γίνεται στην Αρχαία Σπάρτη για την εκλογή ενός νέου μέλους στη γερουσία (Λυκούργος). • Σήμερα υπάρχουν αρκετοί οργανισμοί που χρησιμοποιούν το AV για να εκλέξουν μέλη. Για παράδειγμα οι οργανισμοί Mathematical Association of America και American Mathematical Society. • Η πιο γνωστή εφαρμογή του κανόνα είναι για την εκλογή του Γ.Γ. του Ο.Η.Ε. • Στη διεθνή κοινότητα έχει αρκετούς οπαδούς όσο και αρκετούς πολέμιους.

  16. Μinisum Criteria for approval voting • Τις περισσότερες φορές θέλουμε να εκλέξουμε μια επιτροπή μεγέθους κ παρά ένα μεμονωμένο υποψήφιο. • Πάρα πολλά κριτήρια με τα οποία μπορούμε να επιλέξουμε μία επιτροπή. • Στην πράξη χρησιμοποιείται το κριτήριο Minisum. • Η επιτροπή προκύπτει από τους υποψήφιους που έχουν τους περισσότερους ψήφους. • Έτσι ελαχιστοποιείται το άθροισμα των Hamming Distances των ψηφοφόρων από την επιτροπή.

  17. Minisum ιδιότητες • Ικανοποιεί πλήρως το κριτήριο Candidates ‘ fairness. • Μπορούμε να υπολογίσουμε σε πολυωνυμικό χρόνο το βέλτιστο αποτέλεσμα. • Είναι SP, με κατάλληλο tie-breaking κανόνα. • Είναι Pareto Efficient. • Είναι εύκολος και κατανοητός στους περισσότερους ανθρώπους. • Τι γίνεται όμως με τα άλλα 2 κριτήρια;

  18. Minimax Criteria for Approval Voting • Προτάθηκε το 2004 από τους Brams, Kilgour, Sanver. • Ο στόχος μας είναι να ελαχιστοποιηθεί η μέγιστη Hamming Distance για κάθε υποψήφιο. • Ικανοποιεί το κριτήριο του voters’ fairness. • LeGrand, Markakis, Mehta 2007. • Είναι NP-Hard • Δεν είναι SP • Είναι Pareto Efficient.

  19. Αλγόριθμοι για Minimax approval voting

  20. Pareto Efficiency στο Minimax • Caragiannis, Kalaitzis, Markakis(2010): Όλοι οι αλγόριθμοι που είναι Pareto Efficient έχουν λόγο προσέγγισης για το Minimax το πολύ • Το δίπλα παράδειγμα είναι το κάτω φράγμα που ισχύει για όλους αυτούς τους αλγορίθμους.

  21. LP-basedAlgorithm • Caragiannis, Kalaitzis, Markakis(2010) • Αντικειμενική συνάρτηση: ελαχιστοποίηση του q. • Περιορισμός: q είναι η Hamming Distance των ψηφοφόρων με την εκλεγμένη επιτροπή. • Περιορισμός: οι υποψήφιοι (Χα) που θα εκλεγούν να είναι κ.

  22. Σχόλια για τον LP-basedAlgorithm • Πρόβλημα ακέραιου προγραμματισμού (NP – Hard). • Χαλαρώνουμε τους περιορισμούς σε πραγματικούς, λύνουμε το πρόβλημα και επιλέγουμε τους κ υποψήφιους με τις πιο κοντινές τιμές στο 1 (μεγαλύτερες). • Είναι ο καλύτερος γνωστός αλγόριθμος με λόγο προσέγγισης 2. • Υπάρχει αλγόριθμος που να μη βασίζεται σε γραμμικό προγραμματισμό (combinatorial algorithm);

  23. Simple Minimax Greedy (SMG) - Ορισμός • Ο αλγόριθμος επιλέγει τυχαία σε κάθε επανάληψη έναν υποψήφιο από έναν ψηφοφόρο που έχει τη μέγιστη minimax απόσταση από την επιτροπή που έχει επιλεχθεί ως τώρα και τον βάζει στη λίστα .

  24. SMG - Ψευδοκώδικας Επιτροπή = { } Για ι από 1 έως κ Βρες έναν ψηφοφόρο vπου έχει την πιο μεγάλη απόσταση από την επιτροπή που έχει επιλεχθεί ως τώρα. Αρχή επανάληψης Διάλεξε έναν τυχαίο υποψήφιο cαπό αυτούς που έχει ψηφίσει ο v. Μέχρις ότου ( ο cνα μην υπάρχει στην Επιτροπή) Επιτροπή = Επιτροπή + c Τέλος Επανάληψης

  25. Αποτελέσματα SMG • Τα αρχικά πειραματικά αποτελέσματα έδειχναν ότι στην πράξη ο αλγόριθμος πηγαίνει πολύ καλά. • Κάτω φράγμα όμως κ+1 όπου κ το μέγεθος της επιτροπής.

  26. Κάτω φράγμα κ+1 Στο παράδειγμα θα μπορούσαμε να είχαμε επιλέξει τους 5 υποψήφιους με τα μαύρα αλλά ο αλγόριθμος επέλεξε τους 5 υποψήφιους στα κόκκινα.

  27. Lexicographic minimax greedy (LMG) - Ορισμός • Το πρόβλημα με τον προηγούμενο αλγόριθμο ήταν ότι η επιλογή του κάθε υποψήφιου ήταν τυχαία, στο ενδεχόμενο ισοπαλίας. • Βελτίωση προηγούμενου αλγορίθμου: αντί να επιλέγουμε τυχαίο υποψήφιο θα επιλέξουμε εκείνον που επιτυγχάνει το καλύτερο διάνυσμα από Hamming Distances των ψηφοφόρων.

  28. LMG - Ψευδοκώδικας Επιτροπή = { } Για ι από 1 έως κ c’ = -1 αποστάσεις_c’[ψηφοφόροι] = +άπειρο Για κάθε υποψήφιο c που δεν είναι στην Επιτροπή Για κάθε ψηφοφόρο υπολόγισε το minimax distance αν ο c ήταν στην Επιτροπή στον πίνακα προσωρινές_αποστάσεις. Ταξινόμησε τον πίνακα προσωρινές_αποστάσειςκατά αύξουσα σειρά. Αν προσωρινές_αποστάσεις < αποστάσεις_c’ c’ = c αποστάσεις_c’ = προσωρινές_αποστάσεις Τέλος Αν Τέλος επανάληψης Επιτροπή = Επιτροπή + c’ Τέλος Επανάληψης

  29. Αποτελέσματα LMG • Αρχικά πιστεύαμε ότι έχει σταθερή απόκλιση το πολύ +2 από το βέλτιστο. • Εικάζουμε ότι ο αλγόριθμος έχει λόγο προσέγγισης 2.

  30. Οδεύοντας προς την απόδειξη του approximation του LMG • Γνωρίζουμε ότι μία τυχαία συνάρτηση βέλτιστου minimax distance όσο αυξάνεται το κ έχει αυτή τη μορφή. • Στην αρχή είναι φθίνουσα (υπάρχει κάποιος που ψήφισε πολλούς) , στη μέση υπάρχουν συνεχείς εναλλαγές (πολλοί υποψήφιοι), ενώ στο τέλος γίνεται αύξουσα (καλύψαμε όλες τις δυνατές επιλογές).

  31. Παρατηρήσεις στο γράφημα. • Παρατηρήστε ότι σε κάθε βήμα η συνάρτηση είτε αυξάνεται είτε μειώνεται κατά 1. • Ο LGM βρίσκει το βέλτιστο όταν το κ βρίσκεται προς την αρχή ή το τέλος της συνάρτησης. • Τι γίνεται όμως στην ενδιάμεση περιοχή;

  32. Αναλύοντας τους λόφους • Ο LGM σε κάθε βήμα προσπαθεί να καλύψει όσο το δυνατόν περισσότερους που έχουν το μεγαλύτερο Hamming Distance από την υπάρχουσα επιτροπή. • Μπορεί να κάνει λάθος. Έστω ότι στο βήμα κ-1 επιλέγει τον υποψήφιο c και το μέγιστο Hamming Distance είναι λ. Στο επόμενο βήμα κ όμως όποιον υποψήφιο και να επιλέξει θα δώσει μέγιστο Hamming Distance λ+1. • Αν είχε όμως επιλέξει έναν υποψήφιο c’ στο βήμα κ-1 πάλι με μέγιστο Hamming Distance λ, θα υπήρχε υποψήφιος ο οποίος στο βήμα κ θα μείωνε το μέγιστο Hamming Distance σε λ-1. • Άρα έχουμε μία απόκλιση +2 από το βέλτιστο. • Αυτές οι αποκλίσεις αυξάνουν στη χειρότερη περίπτωση ανά 2 βήματα.

  33. Διαγραμματική Απεικόνιση • Το παρακάτω διάγραμμα μας δείχνει την πιο γνωστή για την ώρα χειρότερη περίπτωση. • Οι προτιμήσεις δηλώνονται με κόκκινο χρώμα.

  34. Ίδιο διάγραμμα

  35. Περαιτέρω αλγόριθμοι για έρευνα • Μελέτη του LMG ως προς δυάδες, τριάδες κλπ. Λογικά θα δίνει καλύτερα αποτελέσματα. • Αλγόριθμος LP-Norm: Σε κάθε βήμα προσπαθούμε να ελαχιστοποιήσουμε τη ποσότητα Για μεγάλα p ο αλγόριθμος ταυτίζεται με τον LMG. • Αλγόριθμος Greedy Voters’ Differences: Πίνακας n x n που κρατάει τις διαφορές των n ψηφοφόρων μεταξύ τους. Σε κάθε βήμα ο αλγόριθμος προσπαθεί να ελαχιστοποιήσει τη/τις μέγιστες διαφορές.

  36. Ανοικτά προβλήματα Αναζητούνται λύσεις για τα παρακάτω προβλήματα. • Υπάρχει πολυωνυμικός αλγόριθμος που να έχει καλύτερο λόγο προσέγγισης από 2; • Τι καλύτερο μπορούμε να κάνουμε σχετικά με το truthfulness (SP, GSP, S-GSP); • Τι γίνεται σε περιπτώσεις όπου οι ψήφοι έχουν βάρη; • Αν η αντικειμενική μας συνάρτηση δεν εξετάζει μόνο τη μεγαλύτερη απόσταση αλλά και τις υπόλοιπες αποστάσεις με κάποιο συντελεστή βαρύτητας; • …

  37. Ερωτήσεις; Σας ευχαριστώ για την παρακολούθηση. Τέλος Παρουσίασης

More Related