slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
ベイズ的ロジスティックモデル に関する研究 PowerPoint Presentation
Download Presentation
ベイズ的ロジスティックモデル に関する研究

Loading in 2 Seconds...

play fullscreen
1 / 19

ベイズ的ロジスティックモデル に関する研究 - PowerPoint PPT Presentation


  • 105 Views
  • Uploaded on

ベイズ的ロジスティックモデル に関する研究. 畜産経営管理学講座 統計研究室 松原 慶尚. 1. 目次. 目的 伝統的ロジスティックモデル ベイズ的ロジスティックモデル 応用例 データ 考察 5. まとめと課題 . 2. 1. 目的. 伝統的ロジスティックモデルの拡張 実際例(尿路感染症データ)への適用・考察. 3. 2. 伝統的ロジスティックモデル. である確率     説明変数  とパラメータ  の関係. (1). (2). 4. オッズ比の推定. オッズ比 (odds ratio). 5. 最尤推定法. 対数尤度関数.

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'ベイズ的ロジスティックモデル に関する研究' - lynnea


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

ベイズ的ロジスティックモデルに関する研究

畜産経営管理学講座

統計研究室

松原 慶尚

1

slide2
目次
  • 目的
  • 伝統的ロジスティックモデル
  • ベイズ的ロジスティックモデル
  • 応用例
    • データ
    • 考察

5.まとめと課題 

2

slide3
1. 目的
  • 伝統的ロジスティックモデルの拡張
  • 実際例(尿路感染症データ)への適用・考察

3

slide4
2.伝統的ロジスティックモデル
  • である確率    
  • 説明変数  とパラメータ  の関係

(1)

(2)

4

slide5
オッズ比の推定

オッズ比 (odds ratio)

5

slide6
最尤推定法
  • 対数尤度関数

(3)

を  で偏微分して=0とおいた連立方程式の解が最尤推定値

6

slide7
最尤推定法の限界
  • 標本数が小さい場合
  • アンバランスなデザインの場合
  • データ以外の情報が存在する場合

最尤推定値の信憑性が欠ける

7

slide8
3.ベイズ的ロジスティックモデル
  • パラメータ  を確率変数とみなす
  •   は共役分布としてのBeta分布に従う  
  •   の密度関数

  •   は未知のハイパー・パラメータで、

(7)

8

slide9
推定法
  • 事後対数尤度関数

(9)

を最大にするものを推定量として用いる

9

slide10
4.応用例
  • リスクファクターの特定と分類が目的 
  • オッズ比      の変化について考察を  行う
  •   の値を変えるということは、事前情報の  量を変える、ということである

10

slide14

図3:Bを除外した場合のDに対するオッズ比

図4:全モデルでのDに対するオッズ比

14

slide15

図5:Bを除外した場合のCに対するオッズ比

図6:Bを除外した場合のFに対するオッズ比

15

slide16

図7:Bを除外した場合のEに対するオッズ比

図8:BとCを除外した場合のEに対するオッズ比

16

slide17
考察
  • コンドームと隔膜においては尿路感染症のリスクファクターとして非常に高い関連性がある
  • 経口避妊薬は尿路感染症にほとんど関連性はない

17

slide18
5.まとめ
  • 以上、ロジスティックモデルの拡張として、ベイズの定理を導入したベイズ的ロジスティックモデルの有効性を確認した

18

slide19
課題

 事前分布の想定を含む最適ベイズモデルの選択が重要な問題

交差確認法や一般化情報量規準を用いて最適モデルを発見する

19