1 / 32

Label scalability of Carrier Ethernet

Label scalability of Carrier Ethernet. Benchmarking Carrier Ethernet Technologies Workshop Session AI.2 - Scientific and Technical Results EuroNGI 2008, Krakow, Poland April 30, 2008 Wouter Tavernier, Koen Casier (Ghent University – IBBT) Luis Caro (University of Girona)

lynley
Download Presentation

Label scalability of Carrier Ethernet

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Label scalability of Carrier Ethernet Benchmarking Carrier Ethernet Technologies Workshop Session AI.2 - Scientific and Technical Results EuroNGI 2008, Krakow, Poland April 30, 2008 Wouter Tavernier, Koen Casier (Ghent University – IBBT) Luis Caro (University of Girona) Dimitri Papadimitriou (Alcatel-Lucent Bell NV) Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  2. Agenda • PROBLEM STATEMENT • Labels in Carrier Ethernet • Label scalability • Label optimization • Results • Short word on label lookups • Conclusion Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  3. Problem statement • Evolution of Ethernet being a LAN technology towards a Carrier Technology • Ethernet = low cost • Ethernet = ubiquitous • Ethernet = plug & play • LAN environments: traffic streams between tens of end-users • Metro/Access environments: traffic streams between thousands of end-users • PROBLEM STATEMENT: • Is Carrier Ethernet able to cope with increasing number of traffic streams Metro network LAN L Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  4. Sync SD DA SA EthType Payload 7 1 6 6 2 46 - 1500 ZC ZC ZC ZC ZC No labels in bridged Ethernet • Forwarding in native Ethernet bridging : stateless (CL) 48 bit MAC-address based A X 1 1 2 5 4 2 3 3 B Y DestOut Port B 2 X 5 Z 5 C 3 DestOut Port X 1 Z 3 A 4 C Z Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  5. Labell Labell Labels in Carrier Ethernet • The concept of a connection (LSP) allows for (CO): • Traffic Engineering • Advanced recovery/protection techniques • BW guarantees • Forwarding is based on a label linked to the connection state Two connections (LSPs) from A to E: maintains state for the green and red connection and forwards based on a label Two connections (LSPs) from A to E D E A B C Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  6. E,200 E,200 E,200 Domain-wide PBB-TE label • Ingress A has 2 LSPs to E, for e.g.: • Protection switching • Load balancing Label remains constant along connection (no SWAP)! Label remains constant along connection (no SWAP)! D E A <100, A> <200, E> <100, E> Distinct routes for dest E, by diff B-VID. B C B-VID 100 reused on same link Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  7. 100 200 100 Link local ELS label • Ingress A has 2 LSPs to E, for e.g.: • Protection switching • Load balancing Label remains constant along connection (no SWAP)! Label can be swapped in intermediate hops along connection! D E A B-VID 100 reused on same link S-VID 100 reused on other link Distinct routes for dest E, by diff S-VID. B C Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  8. . . . x incoming Label usage optimization • Label balancing (online routing optimized ELS) • Shortest path routing takes into account labels used on a link as cost • Merging (ELS) • 1 incoming label per interface + 1 outgoing label • GAIN: x-1 labels on outgoing local interface • Shared forwarding (PBB-TE) • 1 label needed • GAIN: x-1 global labels Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  9. Label scalability • Given the label: • How do different label schemes react under changing conditions? • What is the influence of the topology? • What is the influence the traffic matrix? • What is the influence of the traffic matrix on typical BW usage? ELS PBB-TE Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  10. x B ii A i 1 C 2 b L a ii i 10 3 D 4-9 E Study assumptions • Study the impact on label usage of the following dimensions: • Topology (CONNECTEDNESS) • Traffic matrix (SIZE, UNIFORMITY) • BW usage • NORMALIZATION: • Tests have run 100 times • Only one dimension has been changed in a time • Shortest Path Routing (Dijkstra hop count) is taken as base routing algorithm • Base topology of 100 nodes (connectedness +-2) & 1000 demands L Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  11. Connectedness of a network • Connectedness of a topology: what is the average node degree of a node in a topology: ring vs. full mesh • Example: • Single (un-)connected • 4-connected • Full mesh Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  12. Connectedness of the topology S Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  13. Connectedness vs BW (Luis) • The topology generator considered for generating the topologies in this section is IGEN • For all the topologies the link capacity is set to 10Gb/s and bandwidth request of 100Mb, 200Mb and 300Mb are generated until the network is overloaded. • The implemented algorithm is the SPF • Overload network with links of 10G capacity A Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  14. Connectedness vs. BW (Luis) Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  15. Connectedness vs. BW (Luis) Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  16. Topology size vs. BW (Luis) Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  17. Topology size vs. BW (Luis) Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  18. Uniformity of the traffic matrix • UNIFORMITY: X demands directed to 1 vs. x destinations? • Example: • 4 demands • 2 destinations vs 4 destinations 4 paths / 1 dest 4 paths / 2 dest 4 paths / 4 dest Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  19. Uniformity of the traffic matrix S Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  20. Size of the traffic matrix • The size of a traffic matrix affects the number of demands that are routed over a network: • 10 demands • 100 demands • 1000 demands • 10000 demands • … Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  21. Scaling the order of the traffic S Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  22. Lookup mechanism must be simple and easy to implement • Memory access time is the bottleneck 200Mpps × 2 lookups/pkt = 400 Mlookups/sec → 2.5ns per lookup Lookups Must be Fast Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  23. Direct Memory Lookup (Outgoing Port, new SVID label) SVID/MPLS-label Memory Data Address Direct lookup in ELS vs PBB-TE • PBB-TE: • Label space is 48+12 bits • With 64b data, this is 64 EiB of memory (2^60). • Label space is global • 2^60 > 2^12, therefore cannot hold all addresses in table and use direct lookup, less efficient alternatives: • Hashing • Binary/Multi-way Search Trie/Tree • ELS: • Label space is 12 bits • With 64b data, this is 256 K of memory. • Label space is private to one link • Therefore, table size can be “negotiated” Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  24. Conclusion • The specific traffic matrix & topology used, clearly affect label usage • The uniformity of the traffic matrix affects PBB-TE-type domain-wide labelling: more uniform is better • The topology connectedness affects ELS-type link-local labelling: more connected is better • In typical metro-network with low node-degree, PBB-TE & ELS LL have similar performance • PBB-TE with SF and ELS with merging consistently score better than alternatives • Node local labelling techniques consistently score worse than alternatives. • The label length affects the memory space needed and accordingly affects cost and lookup speed Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  25. Appendices Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  26. Carrier-Grade Ethernet challenges • Flat address space  scalability of number of MAC addresses to be learned • Beyond 100k learned addresses per node seems challenging • Scalability in terms of number of VLANs • 12-bit VLAN ID (VID): 4k VLANs possible network wide • STP cannot converge faster than worst case 20s sec (root failure) • Traffic Engineering (routing) constraint by tree based structure. • Limited OA&M Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  27. x B ii A i 1 C 2 b L a ii i 10 3 D 4-9 E Reference network Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  28. Assumptions (Luis) • Results are evaluated in terms of the maximum and average number of: • For ELS (average calculated based on the number of links): • Labels per link • Labels per link with agg (meaning only paths are count) • Labels per link with agg and label merging • For PBB-TE • Labels per destination • Labels per destination with agg (meaning only paths are count) • Labels per destination with VLAN-reut (meaning link disjoint paths can use same label) • Labels per destination with INV-trees (paths that intersect only on a common segment ending at the destination can also use the same label) B Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  29. Tests on smaller networks not normalized Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  30. Uniformity in small 3-connected network S Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  31. Connectedness in 28n network S Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

  32. Traffic scaling in small network S Label scalability & efficiency of Carrier Ethernet – Wouter Tavernier Vakgroep Informatietechnologie – Onderzoeksgroep IBCN

More Related