240 likes | 437 Views
第二章 二次函数. 1 、二次函数所描述的关系. 学习目标. 1 、探索并归纳二次函数的定义;. 2 、能够表示简单变量之间的二次函数关系。. 温故知新. y=kx+b (k≠0). 变量之间的关系. 一次函数. 正比例函数 y=kx (k≠0). 函数. y=k/x (k≠0). 反比例函数. 二次函数. 你能解下面这个问题吗?. 某果园有 100 棵橙子树,每一棵平均结 600 个橙子。现准备多种一些橙子树以提高产量,现每种一树多收获 300 个橙子,假设总收成为 y ,多种树 x 棵,你能列出这个关系式吗?.
E N D
1、二次函数所描述的关系 学习目标 1、探索并归纳二次函数的定义; 2、能够表示简单变量之间的二次函数关系。
温故知新 y=kx+b (k≠0) 变量之间的关系 一次函数 正比例函数y=kx (k≠0) 函数 y=k/x (k≠0) 反比例函数 二次函数
你能解下面这个问题吗? 某果园有100棵橙子树,每一棵平均结600个橙子。现准备多种一些橙子树以提高产量,现每种一树多收获300个橙子,假设总收成为y,多种树x棵,你能列出这个关系式吗? 这个解析式为: y=300X+60000 你做对了吗?
这个问题呢? 某果园有100棵橙子树,每一棵树均结600个橙子。现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)问题中有哪些变量?其中自变量、因变量各是什么? (2)假设果园增种橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子? (3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式.
解:1)变量有:树的数量,每棵树上平均结的橙子数,所有树上共结的橙子数,其中,树的数量是自变量,每棵树上平均结的橙子数以及所有树上共结的橙子数是因变量 。 = (2)假设果园增种x棵橙子树,那么果园共有( x+100)棵橙子树,这时平均每棵树就会少结5x个橙子,则平均每棵树结(600- 5x )个橙子。 (3)如果果园橙子的总产量为y,则, y=( x+100)(600- 5x )
想一想 在上述第二个问题中我们可以列表来观察一下橙子的总产量随着橙子树的增加而变化的情况,你能得出什么结论? Y=(100+x)(600-5x)=-5x²+100x+60000 结论: 6455 6480 6495 6500 6495 6480 6455 6420 6420 y是随着X的变化而变化,但不是随着X直线型的变化,它有最大值或最小值 。
做一做 银行的储蓄利率是随时间的变化而变化的,也就是说,利率是一个变量。在我国,利率的调整是由中国人名银行根据国民经济发展的情况而决定的。 设人民币一年定期储蓄的年利率是x一年到气候,银行将本金和利息自动按一年定期储蓄转存。如果存款是100元,那么请你写出两年后的本息和y(元)的表达式(不考虑利息税)。
Y=-5x²+100x+60000 Y=100x²+200x+100 观察与归纳 1、y是x的函数吗?y是x的一次函数?反比例函数? 2、定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数叫做x的二次函数。 注意: (1)关于x的代数式一定是整式,a,b,c为常数,且a≠0. (2 )等式的右边最高次数为2,可以没有一次项和常数项,但不能没有二次项。
例题讲解 例1、下列函数中,哪些是二次函数? (1)y=3(x-1)²+1 (2)y=x+1/x (3)s=3- t² (4)y=(x+3)²-x² (5)y=1/x²-x (6)v=10π r²
例题讲解 例2、用总长为60m的篱笆围成矩形场地,场地面积S(m²)与矩形一边长a(m)之间的关系是什么?是函数关系吗?是哪一种函数? 解:S=a(60/2-a)=a(30-a) =30a-a²= -a²+30a 是二次函数关系式。
随堂练习 1、下列函数中,(x,t是自变量),哪些是二次函数? (1)Y=-1/2+3x² , (2) y=1/2x²x³+25, (3) y=2²+2x, (4) s=1+t+5t² 2、圆的半径是1cm,假设半径增加xcm时,圆的面积增加ycm²。 (1)写出y与x之间的函数关系表达式; (2)当圆的半径分别增加1cm,2cm时,圆的面积增加多少?
想一想我们已经学习了哪些函数 一次函数 函数 反比例函数 二次函数
定义中应该注意的几个问题: 小结 拓展 回味无穷 • 1.定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠0)的函数叫做x的二次函数. • y=ax²+bx+c(a,b,c是常数,a≠0)的几种不同表示形式: • (1)y=ax²(a≠0,b=0,c=0,). • (2)y=ax²+c(a≠0,b=0,c≠0). • (3)y=ax²+bx (a≠0,b≠0,c=0). • 2.定义的实质是:ax²+bx+c是整式,自变量x的最高次数是二次,自变量x的取值范围是全体实数.
试一试你能做吗? 解:依题意得 2-m=2 m2+m≠0 ∴ m 无解
独立 作业 P36 习题2.1 1,2题 1. 物体从某一高度落下,已知下落的高度h(m)与下落的时间(s)的关系是:h=4.9t2,填表表示物体在5s前下落的高度: 2.某工厂计划为一批长方体形状的产品涂上油漆,长方体的长和宽相等,高比长多0.5m. (1).长方体的长和宽用x(m)表示,长方体需要涂漆的表面积S(m2)如何表示? (2).如果涂漆每平米所顼要的费用是5元,油漆每个长方体所需要费用y(元)表示,那么y的表达式是什么?
下课了! 结束寄语 • 有信心的人,可以化渺小为伟大,化平庸为神奇. 再见
习题1。物体从某一高度落下,已知下落的高度h(m)和下落的时间t(s)的关系是:h=4.9t²,填表表示物体在前5s下落的高度:习题1。物体从某一高度落下,已知下落的高度h(m)和下落的时间t(s)的关系是:h=4.9t²,填表表示物体在前5s下落的高度:
某工厂计划为一批长方体形状的产品涂上油漆,长方体的长和宽相等,高比长多0.5m。(1)长方体的长和宽用x(m)表示,长方体需要涂漆的表面积S(㎡)如何表示?(2)如果涂漆每平方米所需要的费用是5元,油漆每个长方体所需要费用用y(元)表示,那么y的表达式是什么?某工厂计划为一批长方体形状的产品涂上油漆,长方体的长和宽相等,高比长多0.5m。(1)长方体的长和宽用x(m)表示,长方体需要涂漆的表面积S(㎡)如何表示?(2)如果涂漆每平方米所需要的费用是5元,油漆每个长方体所需要费用用y(元)表示,那么y的表达式是什么?