1 / 18

小组讨论会发言

小组讨论会发言. 超新星遗迹中的分子壳层. 陈阳 on behalves of 苏扬、周鑫、杨戟、具本哲. 2008 - 11 - 13. 为什么要研究 SNRs  MCs. Molecular gas takes up 1/2 mass of ISM Most core-collapse SNe are located close to GMCs --- their birth places (e.g. Huang & Thaddeus 1986)

lucian
Download Presentation

小组讨论会发言

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 小组讨论会发言 超新星遗迹中的分子壳层 陈阳on behalves of苏扬、周鑫、杨戟、具本哲 2008-11-13

  2. 为什么要研究SNRs  MCs • Molecular gas takes up 1/2 mass of ISM • Most core-collapse SNe are located close to GMCs --- their birth places (e.g. Huang & Thaddeus 1986) •  2/3 among 270 Galactic SNRs estimated to have been interacted with MCs; only 20 are confirmed (Reynoso & Mangum 2000) 对分子云的物理作用: • 压缩、加热、驱动气体 • 激发、电离乃至离解分子 • 往往在小比例电离分子云内以连续型(C 型)激波推进,伴随着双极扩散等重要物理 过程 • 高温、高密环境还影响气体的化学演化,伴随着本不可能的分子谱线的发射(如OH 脉泽) • 可能引发湍动和恒星形成 (e.g., Woodward 1976) • 特别重要:激波与云p-p碰撞  0  2, TeV  射线源,目前热点问题之一 SN2006gy in NGC1260 Observations of MCs  SNRs : CO, OH, HCO+… 开发德令哈 !开发K(C)OSMA !

  3. CO towards SNRs CO,13CO (J=1-0) broadening,intensified A survey of 26 Galactic SNRs, ~half are detected in CO line (Huang & Thaddeus 1986). Pioneer works: W44 (Wootten 1977) C: no CO W28 (Wootten 1981) IC443 (DeNoyer 1979)

  4. OH (1720MHz) towards SNRs Survey: Among 260 Galactic SNRs, 33 SNRs are detected in OH 1720MHz line (Green et al. 1997) Pioneer IC443 (DeNoyer 1979)

  5. OH (1720MHz) Masers & SNRs Especially, 19 Galactic SNRs are accompanied by OH 1720 MHz masers (Green et al. 1997)! First detection (Goss & Robinson 1968) Theory (Green,A.J. 2002; Wardle & Yusef-Zadeh 2002)) • Suggested mechanisms: • e’s (produced by X-ray & CR) excite Lyman & Werner bands of H2 FUV • SNR X-ray ionization ( 1015 s1) enhances OH production (H2O + FUV OH +H, Wardle 1999; Yusef-Zadeh et al.2003), • SN C-type shocks in MCs (50-125K, 105cm3) produce OH masers (column 1016cm2) (Lockett et al. 1999) • marking interaction between SNRs & MCs

  6. 德令哈 CO、HCO+、HCN巡测、单测计划 • 与SNR位置、形态相关性,特别关注空腔(cavity)、壳层(shell)结构; • 相互作用的证据:激波作用区域分子气体的谱线轮廓、速度场结构、气体密度和激发温度的分布; • 超新星遗迹成协分子云内恒星形成的影响。

  7. Molecular shells in SNRs? W49B: C-type shock? 3C397: 13CO shell? Both suggested to be in wind-blown bubbles.

  8. Wind-bubble scenario Other examples suggested in wind bubbles N132D: hitting cavity wall (Chen et al. 03) DA530 (Landecker et al. 98) HI walls, all not yet confirmed to be with MCs ! Kes27: shock reflection (Chen et al. 08)

  9. Kes 69 • 特征: • 东南残段壳层: 射电,4.5 & 5.8 m (Spitzer) • 西北致密OH 1720 MHz脉泽,VLSR=69 km/s • 南缘延展OH 1720 MHz脉泽,VLSR=85 km/s

  10. Kes 69: CO shell 80-81 km/s 79-82 km/s 12CO 13CO HCO+ 12CO 13CO C18O Association  d = 5.2 kpc (other than 11.2 kpc) Blue-shifted broadening

  11. Kes 75 • 特征: • 中间PWN • 南面半个壳层 (radio,IR) • 南面两个X射线亮块 49-58 km/s 78-101 km/s

  12. Kes 75: 54km/s component N(H2)  1 cm2

  13. Morphological correspondence Association  d = 10.6 kpc (other than 19 or 6 kpc)

  14. Kes 75: Chandra X-ray spectra NH   cm2

  15. MC-shock interaction • radio continuum: blast wave in ICM /slowed by clouds • X-ray: hot gas (blast-heated, evaporated), ejecta • NIR: 4.5 m– shocked gas (neutrals & mol.s, not PAH) 5.8 m – shocked mol. gas (H2) / ionized (FeII) 24 m – heated dust grains / shocked H2, OH shocked molecules consistent with OH masers, HCO+ consistent with C-type shockes Kes 69Kes 75 Pressure balance: >> average cloud n(H2)~60-100 cm3 Why?

  16. Difficulties with swept-up scenario Kes 69Kes 75 Age: Energy: X-rays: vs ~ 10 km/s too small if only n0 ~ 0.1 cm3 ! Radio emission: H2 formation timescale: (1) CR acceleration needs there would have been no molecules! no new CRs (2) ambipolar diffusion timescale ta-d B field separated, old e escaped

  17. Molecular shells of wind-bubble Ring Nebula: G79.29+0.46 • Imprints of massive star evolution • Natural explanation of why the shells pre-exist & what the shells are (e.g. high n_H2) • Avoid the dynamical difficulties (e.g. high E) Rizzo et al. (08) Kes 69Kes 75 Bubble expansion velocity: similar to the velocity shift

  18. A schetch for Kes 75 N(H2)  1 cm2 N(H2)  51 cm2 NH   cm2 Kes75: -ray excess LX/L  10, 1/3 G21.50.9, 1/12 Crab Partial -ray contribution from pp  0 decay ?

More Related