570 likes | 763 Views
Advanced Computer Vision. Lecture 03 Roger S. Gaborski. Video Lecture. http://videolectures.net/ nips09_torralba_uvs Paper: VLFeat -An open and portable library of computer vision algorithms http:// vision.ucla.edu /papers/vedaldiF10.pdf. Object Recognition. Issues: Viewpoint Scale
E N D
Advanced Computer Vision Lecture 03 Roger S. Gaborski Roger S. Gaborski
Video Lecture • http://videolectures.net/nips09_torralba_uvs • Paper: VLFeat-An open and portable library of computer vision algorithms • http://vision.ucla.edu/papers/vedaldiF10.pdf Roger S. Gaborski
Object Recognition • Issues: • Viewpoint • Scale • Deformable vs. rigid • Clutter • Occlusion • Intra class variability Roger S. Gaborski
Goal • Locate all instances of automobiles in a cluttered scene Roger S. Gaborski
Acknowledgements • Students (Thesis in RIT Library): • Tim Lebo • Dan Clark • Images used in presentation: • ETHZ Database, UIUC Database Roger S. Gaborski
Object Recognition Approaches • For specific object class: • Holistic • Model whole object • Parts based • Simple parts • Geometric relationship information • We could use a similar approach to match patches representing different image categories (‘sand’ patches located on lower half of beach scenes) Roger S. Gaborski
Training Images and Segmentation Roger S. Gaborski
Implicit Shape Model • Patches – local appearance prototypes • Spatial relationship – where the patch can be found on the object • For a given class w: ISM(w) = (Iw ,Pw ) where Iw is the codebook containing the patches and Pw is the probability distribution that describes where the patch is found on the object • How do we find ‘interesting’ patches? Roger S. Gaborski
Harris Point Operator Roger S. Gaborski
Harris Points Roger S. Gaborski
Segmented Training Mask Segmented mask ensures only patches containing valid car regions are selected A corresponding segmentation patch is also extracted Roger S. Gaborski
Selected Patches Roger S. Gaborski
How is spatial information represented? • Estimate the center of the object using the centroid of the segmentation mask • Displacement between: • Center of patch • Centroid of segmentation mask Roger S. Gaborski
Individual Patch and Displacement Information Roger S. Gaborski
Typical Training Example Roger S. Gaborski
Typical Training Example Roger S. Gaborski
Extracted Training Patches Roger S. Gaborski
Cluster Patches • Many patches will be visually similar • Normalized Grayscale Correlation is used to cluster patches • All patches within a certain neighborhood defined by the NGC are grouped together • The representative patch is determined by mean of the patches • The geometric information for each patch in the cluster is assigned to the representative patch Roger S. Gaborski
Patches Roger S. Gaborski
Wheel Patch Example Roger S. Gaborski
Clusters Opportunity for better clustering method Roger S. Gaborski
Clusters Roger S. Gaborski
Object Detection • Harris point operator to find interesting points • Extract patches • Match extracted patches with model patches • Spatial information predicts center of object • Create voting space Roger S. Gaborski
Ideal Voting Space Example Roger S. Gaborski
Multiple Votes Multiple geometric interpretations Roger S. Gaborski
Resolving False Detections Roger S. Gaborski
Localization: Find Corners Roger S. Gaborski
Localization: Model Matching Roger S. Gaborski
Localization: Find Corners Roger S. Gaborski
Model Matching Roger S. Gaborski
Spatial Activation(Hough Space) 9000 different locations Roger S. Gaborski
Hypothesis Candidates 16 candidate locations Roger S. Gaborski
Hypothesis Candidates Roger S. Gaborski
References SEE RESOURCES ON COURSE WEB PAGE: Timothy Lebo and Roger Gaborski, “A Shape model with Coactivation Networks for Recognition and Segmentation,” Eighth International conference on Signal and image Processing, Honolulu, HI. August 2006. Timothy Lebo, “Guiding Object Recognition: A Shape Model with Co-activation Networks,” MS Thesis, RIT, 2005. Daniel Clark, “Object Detection and Tracking using a Parts Based Approach,” MS Thesis, RIT, 2005. Roger S. Gaborski
References Bastian Leibe, Ales Leonardis, and Bernt Schiele, “Combined object categorization and segmentation with an implicit shape model,” ECCV’04 Workshop onStatistical Learning in Computer Vision, May 2004. Shivani Agarwal, Aatif Awan, and Dan Roth, “Learning to detect objects in images via a sparse, part-based representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(11):1475–1490, 2004. Roger S. Gaborski
Voting Space Roger S. Gaborski
Model Patches Selected Roger S. Gaborski
True Object Patches Roger S. Gaborski
Identified Objects Roger S. Gaborski
Research Topics • Scene Categories • MATLAB TOOLKIT: http://www.vlfeat.org/ Roger S. Gaborski
Reference Examples Recognizing Indoor Scenes AriadnaQuattoni and Antonio Torralba (http://people.csail.mit.edu/torralba/publications/indoor.pdf) Building the gist of a scene: the role of global image features in recognition AudeOliva and Antonio Torralba Objects as Attributes for Scene Classi¯cation Li-Jia Li, Hao Su, Yongwhan Lim, Li Fei-Fei (http://vision.stanford.edu/documents/LiSuLimFeiFei_ECCV2010.pdf) See references for each paper Roger S. Gaborski
Modeling the shape of the scene: a holistic representation of the spatial envelope http://people.csail.mit.edu/torralba/code/spatialenvelope/ • SIFT flow: dense correspondence across difference scenes http://people.csail.mit.edu/celiu/ECCV2008/ Roger S. Gaborski
Learning and Recognizing Visual Object Categories • http://www.youtube.com/watch?v=w2C-WffS-AE&feature=bf_prev&list=PL9415E136FBEE3016&lf=results_main Deep Learning: Visual Perception with Deep Learning http://www.youtube.com/watch?v=3boKlkPBckA Roger S. Gaborski
Typical Images http://labelme.csail.mit.edu/Images/spatial_envelope_256x256_static_8outdoorcategories/ coast_cdmc976.jpg coast_n708004.jpg coast_n384026.jpg coast_n739047.jpg forest_for142.jpg forest_for42.jpg forest_for38.jpg forest_for58.jpg tallbuilding_a487092.jpg tallbuilding_a803053.jpg tallbuilding_art1350.jpg tallbuilding_art1506.jpg Roger S. Gaborski
Coast Images Roger S. Gaborski
Forest Roger S. Gaborski
Tall Buildings Roger S. Gaborski