slide1 n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
IES-5000 Geir A. Rimala PowerPoint Presentation
Download Presentation
IES-5000 Geir A. Rimala

Loading in 2 Seconds...

play fullscreen
1 / 108

IES-5000 Geir A. Rimala - PowerPoint PPT Presentation


  • 194 Views
  • Uploaded on

IES-5000 Geir A. Rimala. Agenda . Teknisk om VDSL2/ xDSL VDSL2 Port Setup VDSL2 ADSL2+ Fallback SHDSL Bonding SHDSL EFM Port setup QoS Mulitcast ACL. VDSL1 vs. VDSL2. VDSL Band Plan. VDSL Band Plan. PSD ( dBm /Hz ). POTS. DS1. US1. DS2. US2. 138kHz. Frequency (MHz).

loader
I am the owner, or an agent authorized to act on behalf of the owner, of the copyrighted work described.
capcha
Download Presentation

PowerPoint Slideshow about 'IES-5000 Geir A. Rimala' - lonna


An Image/Link below is provided (as is) to download presentation

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author.While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.


- - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript
slide1

IES-5000

Geir A. Rimala

agenda
Agenda
  • Tekniskom VDSL2/xDSL
  • VDSL2 Port Setup
  • VDSL2 ADSL2+ Fallback
  • SHDSL Bonding
  • SHDSL EFM Port setup
  • QoS
  • Mulitcast
  • ACL
vdsl band plan
VDSL Band Plan

VDSL Band Plan

PSD (dBm/Hz)

POTS

DS1

US1

DS2

US2

138kHz

Frequency (MHz)

3.75MHz

5.2MHz

8.5MHz

12MHz

vdsl2 band plan
VDSL2 Band Plan

VDSL2 Band Plan

PSD (dBm/Hz)

DS1

US1

DS2

US2

DS3

138kHz

US3

30MHz

POTS

Frequency (MHz)

3.75MHz

5.2MHz

8.5MHz

12MHz

18MHz

vdsl2 band plan1
VDSL2 Band Plan

VDSL2 Band Plan Table (998)

  • Plan 998 approved for ANSI T1 (for North America, Japan and Europe)
  • • Plan 997, 998 approved for ETSI (for Europe)
  • • US0 for Annex B: 120 – 276 kHz, DS1 for Annex B: 276 kHz -
basics of the dmt technology

PSD (dBm/Hz)

Frequency (MHz)

Basics of the DMT Technology

QAM-Modulated subchannel (tone) individually optimized as a function of impairments

Unused tone

  • Each band divided into hundreds of 4kHz sub-bands
  • • Each sub-band carries a narrow QAM signal
  • • ADSL compatible tone spacing (4.3125kHz)
  • • Bandwidth optimization and frequency division duplexing occur by zeroing many sub-bands
basics of the dmt technology1
Basics of the DMT Technology
  • DMT (Discrete Multi-tone)

Ideal bits/tone

Typical Loop Gain

Actual bits/tone

Ideal bits/tone

Typical Loop Gain

Actual bits/tone

psd psd mask
PSD & PSD Mask
  • Power Spectral Density
  • Defines the distribution of Power on a VDSL line
  • PSD Mask is a Template that specifies the max. allowable PSD for a Line
  • The unit of PSD is dBm/Hz
limit psd mask
Limit PSD Mask
  • Reduce the impact of interference and attenuation
  • Specified by ITU-T 993.2
  • MIB PSD Mask allows administrator to Tune the Limit PSD Mask
optional band
Optional Band
  • Optional Band controlled by Limit PSD Mask.
  • Optional Band is used for upstream transmission
  • Negotiated during line Initiation
slide15

VDSL

UPBO/DPBO

upstream power back off
Upstream Power Back-off

PSD

PSD

PSD

f

f

f

PSD

f

PSD

f

  • Full-power upstream transmissions on short loops result in high-level far-end crosstalk (FEXT) noise on long (far) loops.
  • Upstream bit rates on long loops can be dramatically reduced.
upstream power back off cont
Upstream Power Back-off (Cont.)

PSD

PSD

PSD

f

f

f

PSD

f

PSD

f

  • Upstream transmitters must reduce their PSDs so the levels of FEXT they inject to shorter loops are lower.
  • The process of reducing the upstream PSD is known generically as up stream power back-off (UPBO)
upstream power back off cont1
Upstream Power Back-off (Cont.)
  • Varying telephone wiring lengths cause cross talk
  • Enable UBPO to adjust the Transmit PSD based on reference line length
upstream power back off cont2
Upstream Power Back-off (Cont.)
  • General Conclusions
  • Non-FEXT dominated environment:
  • Do not apply UPBO!
  • It only causes SNR reduction in short loops with no SNR
  • improvement in long loops.
  • FEXT-dominated environment:
  • Apply UPBO for all loops shorter than the longest one!
  • Anappropriate UPBO value can always be found that avoids any SNR reduction and even improves the SNR in either long or short loops (because of lower FEXT coupling in short loops).
downstream power back off
Downstream Power Back-off
  • VDSL signal may interfere with other service on the same bundle of Lines
  • DPBO can reduce performance degradation bychanging PSD Level
slide21

xDSL

Error Correction (QoS)

error correction qos
ErrorCorrection (QoS)
  • Interleave and Reed-Solomon (FEC)
    • BitErrorRate 10-7, 0dB SNR
      • Max 1 bitfeil per 10 millioner bits
      • 20Mbps = ?
    • NoiseMargin
      • 6dB SNR = BER 10-24
      • Reallife≤ BER 10-9
    • Reed-Solomon
      • Sender redundant data
      • Single bit errorcorrection
    • Interleaving
      • Økt latency
      • Kun maks, ingen minimum
      • Beskyttelsen er avhengig av

linkspeed

error correction qos1
ErrorCorrection (QoS)
  • INP (Impulse Noise Protection)
    • Bit rate = Number_of_tones_per_symbol * Bits_per_tone * Symbolrate
    • ADSL example: 512*15*4000 = 30,7 Mbps is the theoretically maximum bitrate for up/downstream combined
    • 1 Symbol = All tones
    • 4000 Symbols per second
    • 1 Symbol = 250 µs (30a = 125 µs)
error correction qos2
ErrorCorrection (QoS)
  • Inp
    • Gir minimumsbeskyttelse
error correction qos4
ErrorCorrection (QoS)

INP 2 (symbols) og 8 ms Interleave = 500µs beskyttelse

Får du mer enn 500µs ImpulseNoise så kan du miste 8ms med data

error correction qos5
ErrorCorrection (QoS)
  • Interleaving
    • Økt latency
    • Kun maks, ingen minimum
    • Beskyttelsen er avhengig av link-speed
    • INP
      • Gir minimumsbeskyttelse
      • Opererer uavhengig av link-speed
      • Broadcom: ”…field data demonstrating that at least 5 ms [INP] are required.”
  • BitErrorRate 10-7, 0dB SNR
    • Max 1 bitfeil per 10 millioner bits
    • 5 Mbps = ?
  • NoiseMargin
    • 6dB SNR = BER 10-24
    • Reallife≤ BER 10-9
  • Reed-Solomon
    • Sender redundant data
    • Single bit errorcorrection
error correction qos6
ErrorCorrection (QoS)
  • PhyR (Fire)
    • Broadcompropritær terminologi (G.INP)
error correction qos7
ErrorCorrection (QoS)
  • PhyR (G.INP)
    • Selv om det blir bedt om en retransmit så sendes den korrupte dataen videre innover så RS kan forsøke å reparere pakka
    • Kun overhead ved feil (+ RS), ingen Interleaving
    • Høyere INP uten ”penalties” (linkspeed/latency)
    • BER 10-10 på 0 dB SNR
    • Enkel provisjonering
    • Ingen vedlikehold
    • Håndteres av DSL-chippen, ikke noe på høyere layer
phyr g inp1
PhyR (G.INP)

The INP value starts from 17.0 (DMT Symbol) when PhyR is enabled.

slide32

VDSL

Port setup (-> 31.10.10)

vdsl2 port setup
VDSL2 port setup

Profile 12b, No US0, B8-9 mask, UPBO

slide34

VDSL

Port setup (01.11.10 ->)

vdsl2 band plan2
VDSL2 Band Plan

VDSL2 Band Plan Table (998)

  • Plan 998 approved for ANSI T1 (for North America, Japan and Europe)
  • • Plan 997, 998 approved for ETSI (for Europe)
  • • US0 for Annex B: 120 – 276 kHz, DS1 for Annex B: 276 kHz -
vdsl2 port setup3
VDSL2 port setup

Profile 17a, US0 (120 kHz – 276 kHz), UPBO, Mask: B8-2, B8-3, B8-6, B8-10, B8-12, B8-15

vdsl2 port setup4
VDSL2 port setup

Profile 17a, US0 (120 kHz – 276 kHz), UPBO, Mask: B8-2 (ingen US0, DS1 ihhtTelenor), B8-3 (DS1 starter på tone 36), B8-6 (Ingen US0, DS1 ihhtTelenor), B8-10 (Ingen US0, DS1 ihhtTelenor), B8-12(Ingen US0, DS1 ihhtTelenor), B8-15 (Ingen US0, DS1 ihhtTelenor)

shdsl efm bonding
SHDSL EFM bonding
  • SLC1348G-22
    • EFM
    • 64PAM / 128PAM kommer
    • SLC1348G-22 = SLC1248G-22
  • EFM bonding begrensninger
    • Kan kun EFM bonde på samme chip (1-4, 5-8, 9-12, etc)
  • CPE
    • P794
    • EFM Bonding
    • 64PAM / 128PAM
    • Samme chip som i SLC1348G-22
slide44

QoS

Queuing methods

queue method overview
Queue Method Overview
  • Queuing is used to help solve performance degradation in network congestion.
  • Currently, it supports three scheduling methods:
    • SPQ
    • WRR
priority to queue assignment
Priority to Queue Assignment

IES-5000/-6000 has 8 hardware queues.

strict priority queuing spq
Strict Priority Queuing (SPQ)
  • High Priority Queuesendsfirst(Default)
  • Low Priority Queue packets will not be sent until the High Priority Queue is empty

High priority first out

High Priority Queue

Low Priority Queue

Switch

t

weighted round robin wrr
Weighted Round Robin (WRR)
  • Each queue has its weighted value
  • The queue selection schedule is round-robin
  • The policy is based on packet

High priority is sent out first with weight 3

W=3

High Priority Queue

Middle Priority Queue

W=2

Low Priority Queue

W=1

Switch

t

weighted round robin wrr1
Weighted Round Robin (WRR)

3

X 100M

= 50M

B =

1 + 2 + 3

  • Bandwidth for the Highest Priority Queue if each packet has the same packet size:
special scenario of wrr
Special Scenario of WRR
  • Special Scenario
    • If the low priority queue has large packet sizes

W=3

High Priority Queue

Middle Priority Queue

W=2

Low Priority Queue

W=1

Switch

t

The low priority queue has the "Highest Bandwidth"

slide52

QoS Background

  • “Best effort” is the characteristic of an IP network
  • -Trying its best to send the packet from the source to
  • destination
  • -No commitment in QoS
    • Why QoS
    • -Newly emerging services: VoIP IPTV etc.
    • -the “dumb” IP network need some intelligence
slide53

IPQoS in MSAN/VES

  • Groups and prioritizes in queues for downstream direction(Toward CPE)
  • Four parameter

-PIR(Peak Information Rate)

-CIR (Committed Information Rate)

-PBS(Peak Burst Size)

-CBS(Committed Burst Size)

slide54

Notes

  • IPQoS is applied to the downstream traffic only.
  • Limit IP data rate of the traffic flowing through a physical queue.
  • Supports 1,2,4,8 queues.
  • Used, instead of ATM QoS, when falling back to ADSL2+ mode
slide55

VDSL Mode

IES-5000

Switch

Tag: p=0

P=7

Tag: p=7

P=0

VDSL2 CPE

Port1

100Mbps

40

Mbps

60

Mbps

FTP

VOD

slide58

ADSL Mode: MPVC in SPQ

VES-1624FT-55A

Switch

Tag: p=0

0/36

Tag: p=7

0/33

Port1

20M

5.12

M

10.24

M

FTP

VOD

slide61

IGMP Snooping

  • IGMP Snooping allows a switch to “listen to” theIGMP conversation between hosts and multicast routers.
  • IGMP Snooping provides a way to forward traffic through specific ports.
  • Maintains an IGMP table
  • Multicast data packets are forwarded only to group members and multicast routers
slide62

Not a

Receiver

Receiver

Receiver

Receiver

IGMP Snooping Inactivate

All hosts connected with this

switch will receive traffic!

IGMP Router

Switch without IGMP Snooping

slide63

Not a

Receiver

Receiver

Receiver

Receiver

IGMP Snooping Activate

Specific hosts connected with this

switch will receive traffic!

IGMP Router

Switch with IGMP Snooping

slide64

IGMP Snooping Procedure

  • Host sends a with specific GDA (Group Destination Address) it wants to join in.
  • Switch a GDA MAC Address of the associated ports in the MAC Filtering Database.
  • Next time the multicast traffic will be to the ports associated with this GDA MAC address regarding to the Filtering Database.

Leave Message

Report Message

Removes

Adds

Dropped

Forwarded

slide65

IGMP Proxy

  • IES-5000 with IGMP proxy enabled could replace IGMP router in a simple tree topology
  • IGMP proxy could help to reduce load on uplink IGMP router
slide66

IGMP Snooping vs IGMP Proxy(1)

IGMP

router

Video server

MulticastTraffic

Report/Leave

Enable IGMP Snooping

Not a Receiver

Receiver

Receiver

Receiver

slide67

IGMP Snooping vs IGMP Proxy(2)

IGMP

router

Video

server

MulticastTraffic

Report/Leave

Enable IGMP Proxy

Not a Receiver

Receiver

Receiver

Receiver

slide69

MVLAN

  • Multicast VLAN
  • It allows the single multicast VLAN to be shared in the network while subscribers remain in separate VLANs
  • MVR(Multicast VLAN Registration) provides the ability to continuously send multicast streams in the multicast VLAN while isolating the streams from the subscriber VLANs .
slide70

IPTV Service without MVR

IGMP Router

single multicast stream20Mb/s eachTotal 120 Mb/s

L2 Switch

CH1, VLAN1

CH1, VLAN2

CH1, VLAN3

CH1, VLAN4

CH1, VLAN5

CH1, VLAN6

CH1, VLAN200

slide71

IPTV Service with MVR

IGMP Router

single multicast streamTotal 20Mb/s

L2 Switch

CH1, VLAN1

CH1, VLAN2

CH1, VLAN3

CH1, VLAN4

Always untagged

CH1, VLAN5

CH1, VLAN6

CH1, VLAN200

slide72

Functions

  • MVR allows a subscriber to subscribe/unsubscribe to a multicast stream on the multicast VLAN. (Reduce multicast VLAN traffic)
  • Simplifies multicast group management
  • For bandwidth and cost reasons
slide73

MVR Setup – VDSL2

MSC1000G> multicastmvlangroupset

usage: set <vid> <index> <start-mcast-ip> <end-mcast-ip>

<index> : index, 1~16

<start-mcast-ip> : start ofmulticastaddress range

<end-mcast-ip> : end ofmulticastaddress range

MSC1000G>

lab vdsl2 mvlan

10.0.0.x/24

VLC

10.0.0.1/24

Lab – VDSL2 MVLAN

IPTV Streamer (UDP: 239.0.0.3

Port 1234)

IGMP Router

Switch

MVLAN = 200 DATA = 12

VDSL2 CPE

lab vdsl2 mvlan1

10.0.0.x/24

10.0.0.1/24

Lab – VDSL2 MVLAN

IPTV Streamer

IGMP Router

Switch

MVLAN = 100 DATA = 12

0 / 33

ADSL2+ CPE

dhcp snoop1
DHCP Snoop

If a DSLAM enabled DHCP Snooping, it will monitor the DHCP conversation between Server and Clients.

It records the IP & MAC info by the DHCP-request & ACK packet transmitted through it.

DSLAM maintains an DHCP-snooping table regarding with the ADSL port.

Traffic from a PC with statically configured IP, which does not exist in the Snooping table, will not be allowed to pass.

You can manually add some static IP addresses, which are trusted.

configure and cli commands of dhcp snoop
Configure and CLI commands of DHCP snoop
  • Enable/Disable DHCP-snoop
    • “acldhcpsnoop enable/Disable <slot | slot-port>”
  • Show DHCP snooping-table
    • “show dhcp snoop <slot | slot-port>”
  • Statically add trusted IP address
    • “acldhcpsnoop pool set <slot-port> <ip>”
the end thank you

-The End-Thank you!!

Leo Sun

Customer Service Organization

slide83

TRTCM

2-rates 3-colors marker

what is trtcm
What is TRTCM?
  • TRTCM, defined in RFC 2698, stands for Two Rate Three Color Marker.
  • Two rates: PIR / CIR
    • PIR refers to the maximum rate
    • CIR refers to guaranteed rate
  • Three Color: Red / Yellow / Green
    • Colors refers to the Packet Loss Priority
    • Red (high)  Yellow (medium)  Green (low)
trtcm coloring modes
TRTCM coloring modes
  • TRTCM-Color-Blind Mode
    • It disregards color
  • TRTCM-Color-Aware Mode
    • It’s aware of colored packets
web setup 2
WEB setup – (2)

You must also activate DiffServ on the Switch and the individual ports.

two rate three color marker
Two Rate Three Color Marker

Ingress Rate

  • PIR (Peak Information Rate)
  • The maximum bandwidth allowed on a port when there is no network congestion

PIR

Drop

  • EIR (Exceeded Information Rate)
  • EIR = PIR - CIR
  • The average rate of Ethernet frames allowed into the network based on a “best effort” basis

EIR

Drop when congestion

CIR

  • CIR (Committed Information Rate)
  • The guaranteed bandwidth for the incoming traffic, regardless of network conditions

Forward

implementation of trtcm 1 2
Implementation of trTCM(1/2)

PIR

CIR

Committed Burst Size(CBS)

Peak Burst Size(PBS)

Peak Rate Bucket

Committed Rate Bucket

implementation of trtcm 2 2
Implementation of trTCM(2/2)

Confirmed rate tokens entering

@ PIR per second

Confirmed rate tokens entering

@ CIR per second

Outgoing Frames at a regular rate with controlled burst

PBS

CBS

Incoming frames

confirming frames

Committed Rate Bucket

Peak Rate Bucket

Exceeding Frames

Violating Frames

(Droped)

examples
Examples

Total Bandwidth = 4Mbps

Port1: CIR= 2Mbps, PIR= 4Mbps

Port 2: CIR= 2Mbps, PIR= 4Mbps

1Mbps

1Mbps

2Mbps

1Mbps

2Mbps

1Mbps

P1

User1

2Mbps

1Mbps

1Mbps

3Mbps

3Mbps

3Mbps

P2

User2

User1

P1

P2

Drop 1Mbps

User2

User1

P1

P2

User2

egress check
Egress Check

Egress Bandwidth Control

Port1- 4Mbps

Port2- 4Mbps

P1

P2

Egress 4Mb

Ingress 4 Mb

Ingress 4 Mb

Ingress 8 Mb

Ingress 8 Mb

Egress 4Mb

configur ation example
Configuration Example

192.168.200.253

192.168.102.0/24

Internet

Phone1

150M

VLAN100

VLAN102

IAD-1

DHCP Sever

20M CIR

PC1

Layer3 Router

MES-3728-1

192.168.100.251

XGS-4728F

192.168.102.254

192.168.100.253

192.168.100.254

Phone1

192.168.200.254

IAD-2

20M CIR

MES-3728-2

192.168.100.252

PC2

port25

port27

MES-3728

Egress limit 150M

Ingress CIR 20M

Ingress PIR 50M

slide98

VDSL

VDSL2 to ADSL2+ fall back

adsl2 fall back
ADSL2+ fall back
  • ADSL2+ fall back
  • Bi-directional AAL5 ATM VCs
  • PPPoA and IPoA
  • PVC to VLAN mapping
dsl operational mode
DSL operational mode

Select the port’s DSL operational mode as “adsl2+”, or “auto” to have the IP DSLAM automatically determine the mode.

lab adsl2 fallback

10.0.0.x/24

Lab - ADSL2+ Fallback

10.0.0.1/255.255.255.0

0/33 VID = 14

ADSL2+ CPE

slide104

SHDSL

ATM g.bond

shdsl g bond
SHDSL g.bond
  • Bundling metoder:
    • 4-wire
    • Mpair4
    • G.bond
lab atm g bond

10.0.0.x/24

Lab – ATM g.bond

10.0.0.1/255.255.255.0

IES-5000

VID = 21

IES-708

lab atm g bond1

10.0.0.x/24

Lab – ATM g.bond

10.0.0.1/255.255.255.0

IES-5000

VID = 22

IES-708