Download Presentation
## EXAMPLE 1

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -

**a. Because 240º is 60º more than 180º, the terminal side**is 60º counterclockwise past the negative x-axis. EXAMPLE 1 Draw angles in standard position Draw an angle with the given measure in standard position. a.240º SOLUTION**b. Because 500º is 140º more than 360º, the terminal side**makes one whole revolution counterclockwise plus 140º more. EXAMPLE 1 Draw angles in standard position Draw an angle with the given measure in standard position. b. 500º SOLUTION**c. Because –50º is negative, the terminal side is 50º**clockwise from the positive x-axis. EXAMPLE 1 Draw angles in standard position Draw an angle with the given measure in standard position. c. –50º SOLUTION**There are many such angles, depending on what multiple of**360º is added or subtracted. EXAMPLE 2 Find coterminal angles Find one positive angle and one negative angle that are coterminal with (a) –45º and (b) 395º. SOLUTION a. –45º + 360º = 315º –45º – 360º = – 405º**= –325º**EXAMPLE 2 Find coterminal angles b. 395º – 360º = 35º 395º – 2(360º)**1.**65° 2. 230° for Examples 1 and 2 GUIDED PRACTICE Draw an angle with the given measure in standard position. Then find one positive coterminal angle and one negative coterminal angle. 425º, –295º 590º, –130º**3.**300° 4. 740° for Examples 1 and 2 GUIDED PRACTICE 660º, –60º 20º, –340º