160 Views

Download Presentation
##### Tangent Space

**An Image/Link below is provided (as is) to download presentation**

Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server.

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -

**Tangent Vector**• Motion along a trajectory is described by position and velocity. • Position uses an origin • References the trajectory • Displacement points along the trajectory. • Tangent to the trajectory • Velocity is also tangent x3 x2 x1**Tangent Plane**• Motion may be constrained • Configuration manifold Q • Velocities are not on the manifold. • Set of all possible velocities • Associate with a point x Q • N-dimensional set Vn • Tangent plane or fiber • TxQxVn S1 V1 q S2 x V2**Fibers can be associated with all points in a chart, and all**charts in a manifold. This is a tangent bundle. Set is TQQVn Visualize for a 1-d manifold and 1-d vector. Tangent Bundle V1 S1**A tangent plane is independent of the coordinates.**Coordinates are local to a neighborhood on a chart. Charts can align in different ways. Locally the same bundle Different manifold TQ Twisted Bundles V1 S1**Map from tangent space back to original manifold.**p = TQQ; (x, v) (x) Projection map p Map from one tangent space to another f: UW; U, W open f is differentiable Tf: TUTW (x, v) (f(x), Df(x)v) Tangent map Tf Df(x) is the derivative off Tangent Maps V1 S1**Tangent Map Composition**• The tangent map of the composition of two maps is the composition of their tangent maps • Tf: TUTW; Tg: TWTX • T(gf) = TgTf • Equivalent to the chain rule next