1 / 44

Nicolas Epchtein CNRS, UNS, OCA, Nice, France on behalf of the PLT Consortium

A project for a P ola r L arge T elescope (PLT) and a N ew I nfrared S ky S urvey from A ntarctica ( NISSA ). Nicolas Epchtein CNRS, UNS, OCA, Nice, France on behalf of the PLT Consortium. The PLT Consortium .

lelia
Download Presentation

Nicolas Epchtein CNRS, UNS, OCA, Nice, France on behalf of the PLT Consortium

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A project for a Polar LargeTelescope (PLT)and aNew InfraredSkySurvey fromAntarctica (NISSA) Nicolas Epchtein CNRS, UNS, OCA, Nice, France on behalf of the PLT Consortium LIA-Origins-May 2012

  2. The PLT Consortium N. Epchtein(1), W. Ansorge(2), L. Abe(1), E. Aristidi(1), D. Mékarnia(1), J.-P. Rivet(1), M. Langlois(3), I. Vauglin(3), B. Le Roux(4), M. Carbillet(1), G. Moretto(18), C. Tao (19,20) , A. Tilquin(19) , S. Argentini(7), C. Genthon(6), R.Lemrani(8), T. Le Bertre(5), G. Marchiori(9), J. Montnacher(10), C.David(11), I. Esau(12), E. Ruch(13), I. Bryson(14), G. Dalton(15), M. Ashley(16), J. Storey(16), J. Lawrence(17) (1) CNRS‐UNS‐OCA, Laboratoire Lagrange, Nice, France (2) RAMS‐CON Management Consultants, Assling, Germany (3) CNRS‐CRAL‐Univ. Lyon1, France (4) CNRS‐LAM, Marseille, France (5) CNRS‐LERMA, Observatoire de Paris, France (6) CNRS‐LGGE, Grenoble, France (7) CNR‐ISAC, Rome, Italy (8) Centre de Calcul IN2P3, Lyon, France (9) EuropeanIndustrial Engineering (EIE), Mestre, Italy (10) Fraunhofer Institute (IPA), Stuttgart, Germany (11) Institut Paul Emile Victor, Brest, France (12) Nansen Environmental and RemoteSensing Center, Bergen, Norway (13) SAFRAN (SAGEM‐REOSC), Saint‐Pierre du Perray, France (14) STFC, UK‐ATC, Edinburgh, UK (15) STFC, RAL SpaceDpt., Didcot, UK (16) University of New South‐Wales, Sydney, Australia (17) Anglo‐AustralianObservatory, Australia. (18) IPNL- IN2P3, Lyon, France (19) CPPM-IN2P3, Marseille, France (20) TsinghuaUniversity, Beijing, China LIA-Origins-May 2012

  3. outline - 50 years of large scaleInfraredbroad band surveys - The Antarcticopportunity - The PLT/NISSA project - Conclusions LIA-Origins-May 2012

  4. Origin of the project • Recommendations of • ASTRONET (2008) • ARENA network (2009) • INSU 5-yr prospect (2009) • PILOT phase A study (Australia) (2008) • Consortium was set up to submit a proposal to the EC FP7 call for « Design Study » in 2010 • Enlarged for a new proposal to French ANR in 2012: AAA proposal • PresentStatus: • EC proposal in standby • ANR waitingevaluation (June 2012) • Seeking for partneship (China, Australia, ...) • Preparing future proposals to EC Horizon 2020 (in 2013) LIA-Origins-May 2012

  5. 50 years of infraredskysurveys seereview : S.D. Price, Sp. Sci. Rev. 142, 233 (2009) Past/present (ground) • IRC (I/K) (60’s) • 2MASS (JHKs) / DENIS (IJKs) (90’s) • UKIDSS (2000’s) • VISTA (visible to Ks) (2010’s) • Past (space) • AFGL (70’s) • IRAS (10-100µm) (80’s) • MSX (90’s) • WISE (3-24 µm) (2010) • Spitzer (2000’s) • AKARI (2000’s) • Projects (ground) • SASIR (US/Mexican) • Projects (Antarcica) • PILOT (Australia) • KDUST (China) • PLT/NISSA (Europe/Australia) • Projects (space) • WFIRST • Spica • Snap LIA-Origins-May 2012

  6. Scientific drivers for new near-IRsurveys • Large scalesurveys (in particular in the IR) are basic tools for astrophysicalresearch • Top priorities in astrophysics for the nextdecade: • Nature of darkmatter and energy – Distant universe • Exoplanets • Stellar populations in galaxies – History of formation. • Giantobservatoriesfor the optical/IR range: • extremesensitivity, ultra- HAR, but limitedfields of view • E-ELT, TMT, JWST ca. 2016-2020  30’ • Mega-surveys(optical/IR): • 100’s MpxlsGpxlsarraysalso in the IR range (+ fast pipeline/hugearchivingcapacity) • Time domain exploration(from minutes to years) • From the ground: LSST (visible), Pan-STARRS(visible), VISTA (near IR), SASIR (?) • In space: EUCLID, WFIRST (IR) … • In Antarctica: propositions of NIR IR ultra deepsurveys: PLT/NISSA, KDUST, LOAT... • Spectro-imagingsurveysin the thermal IR particularly in the 2.2- 3.6 µm range LIA-Origins-May 2012

  7. Guidelines for a new broad band near IR survey • Fasterthan VISTA @K by a factor > 10 or more • Betterangularresolutionthan VISTA (~ 0.3 ’’ vs. 0.5’’) • Large Fields (comparable to VISTA’s). All sky (?) • Repeated (time domain exploration) (LSST-style) • Nearthermal infrared(2.2 to 4 µm) • Uninterrupted (day/night) observations beyond 3µm • Possible imaging-spectroscopic mode in the 2.3-5 µm range? • Providelists of veryfaintexcitingsources (transients, large z, candidate exoplanets...) for E-ELT, JWST.... alerts • Follow up large spacesurveys EUCLID, WFIRST LIA-Origins-May 2012

  8. Main science drivers for a new IR survey • Probe ofearlyuniverse, QSO searchre-ionization (z>6), • distance candles (RR Lyr, Cepheids) • IR SNIa (in heavilyobscuredregions) • Monitoring and characterization of exoplanets (highdynamicimaging) • Stellar populations and theirhistory in galaxies • Deepsurveys offieldBD’s and veryyounglow mass stars stars (T< 600K) • Exhaustive global synopticsurveysof variable stars (all types) in the MagellanicCloudsand stream (VMC) and galaxies of the local group • Astrometricsurveys of nearbyobjects (browndwarfs, small bodies, geocruisers, PHA, KBOs) (extend LSST for coolerobjetcs) • ComplementsFeed back withother large missions JWST/E-ELT/EUCLID/LSST • Serendipitousdiscoveries LIA-Origins-May 2012

  9. EarlyUniversewith the PLT/NISSA (or KDUST) • Most distant QSO discovered by UKIDSS (ULAS J1120+0641 (Mortlock et al. Nat. 474, 616) • How to explore re-ionizationperiodat z >7 whereopticalsurveys are useless • Improve UKIDSS/ VISTA by 2 to 3 mag. • Immediatecolourselectioni-K and spectroscopicsurvey (2 simultaneouschannels) • SNIaparticularly in regions of highdust extinction (complemetary to LSST) • Weaklensing • SNe: Pair Instability • Detectionand monitoring of GRBs(respond to alerts LSST, SWIFT, Fermi..) LIA-Origins-14 May 2012

  10. Stellar populations and formation history in MC’s(M.-R. Cioni) • DENIS/2MASS(IJHK) • SAGE (Spitzer) (3-25 µm) • VISTA (VMC) (YJKs) • PLT KdLs L’ Cioni & Habing 2003 LMC-AGBs CCPM-PLT-29_04_2011

  11. VMC surveywith VISTA (PI M.-R. Cioni) • Stellar formation history • 3D structures • Associations, binaries • PNe and emission line objects • Mouvementspropres • Formation stellaire • Re-construct the system • Better etsimate of MC distances PLT-NISSA: • Search for even more deeply embedded AGB stars • 10-yr monitoring of All RGB/AGB stars  P-L • deeper in K mK> 22 source VMC survey (M.-R. Cioni, PI: ; A&A, 527, A116, 531, A157, 537, A105, 537, A106 CCPM-PLT-29_04_2011

  12. new proposed large scale IR surveys • SASIR(J. Bloom et al. UCLA, Arizona, Mexico)SynopticAll SkyInfraRedsurvey • wide bands: YJHK • 6.5 m telescopeat San Pedro Martir (Mexico) • 124 X 2K arrays • NISSAa New InfraredSkySurvey fromAntarcticawithPLT (in a conceptual phase) • China: KDUST • Australia: LOAT (J. Mould) LIA-Origins-May 2012

  13. NISSA NISSA NISSA NISSA

  14. The AntarcticOpportunity LIA-Origins-May 2012

  15. Casey Dome A Dome F DDU casa212 traverse Astrolabe Hobart Dome C Twin Otter South Pole Christchurch M. Zucchelli ACCESS to Antarctic stations A319 CCPM-PLT-29_04_2011

  16. The Antarcticopportunity • High altitude: 3000-4000 m • verylowtemperature: -20C<T<-90C • lowest water vapouramount : 200<W<800 µm • lowestsky background emission • thinnest turbulent layer • long « night » • Best ground sites to carry out deep thermal IR and submillimetre-wave observations • Few appropriatestations currently in operation: • all year round operated • Amundsen-Scott at South Pole (US station) not appropriate to optical/IR • Concordia station atDome C(French/Italian) • summeroperationsonly • Kunlun station atDome A (China) (highest spot) • Dome F(uji) (Japan) • Site qualification of Dome C is one of the mostthorougheverdone: • ~10-year monitoring (seeing, turbulence, meteo..) • 7 winterovers (~15 persons) since 2005 • Optical/IR astronomy in Antarcticaisnow a reality ! LIA-Origins-May 2012

  17. The Concordia station atDome C (2011) operated by IPEV and PNRA (ENEA) Astronomy area Site testingintruments (Concordiastro) Main buildings IRAIT ASTEP GermanDome cochise LIA-Origins-May 2012

  18. AntarcticObservatories Concordia (Dome C) Amundsen-Scott, South Pole CSTAR at Kunlun (Dome A) Dome F(uji)

  19. Site qualification • Fraction of clear time (widefield cameras: Gattini, CSTAR, meteo data) • Turbulence profile structure and seeing (DIMM, GSM, MASS, SODAR) • Skytransparency (AASTINO, SUMMIT) • Aerosol contamination • Skybrightness • Photometricstability LIA-Origins-May 2012

  20. Seeing conditions on the Antarctic Plateau • years record atConcordia • 7 winteroverssince 2005 • Free atmosphere seeing ~0.3’’ (DIMM measurementsAristidiet al. 2009) • Balloon, C2n Surface layer thickness: (median value: 27 m) • 4 years record atKunlun Dome A • PLATO, CSTAR • Skybightness (i band) Hu Zou et al. 2010, AJ 140, 602) • First opticalphotometricresults LIA-Origins-May 2012

  21. Water vapour content aboveDome C fromTremblin et al., 2011, A&A, 535, 112 LIA-Origins-May 2012

  22. L’ M’ J H K Betterskyatmospheric transmission Most appropriate spectral domain for NISSA PLT_Fizeau_10112010

  23. from Rousselot et al., 2000, A&A 354, 1134 LIA-Origins-May 2012

  24. At Dome C (-50 C, or 223 K), the thermal background at 3 µm is reduced by a factor 100 with respect to a temperate site (10 C, or 283 K). Conversely the limit for the thermal IR regime is redshifted by about 0.7 µm (from ~2.0 to 2.7 µm). Bλ In otherwords, atDome C, the non-thermal IR spectral rangeisextended to the red by 0.7 µm.

  25. The Antarcticadvantages (summary) LIA-Origins-May 2012

  26. First Astrophysicalresultsat Concordia: ASTEP (2011) IRAIT next to come in 2013 from Abe et al., 2012, subm. A&A LIA-Origins-May 2012

  27. Thence, road is free to devise bigger instruments and more ambitiousprojectsvision 2010-2020...... LIA-Origins-May 2012

  28. Prospects in AntarcticAstronomy(ASTRONET & ARENA 2006-2009) The Antarctic Instruments supported by ARENA under EC FP6 grant RICA 026150

  29. Baseline for an Antarctic IR Survey Telescope LIA-Origins-May 2012

  30. Quick calculation – Survey efficiency • signal to noise • d = aperture ; s =seeing ; B= sky background • assume same seing • gain in B: 10 (1 mJyvs. 0.1 mJy/sqarcsec) • 4 m in Antarctic conditions  gain ~ 3 /VISTA • 2.5 m Antarctictelescope gain ~ 2 /VISTA • assume 16 x 4 k arrays for PLT 0.15 arcsec/pxl Gain relative to VISTA: 0.8 • Number of clearnightswith 0.35’’ seeing: Paranal 0.2, Dome C: 0.9  4.5 • Gain speed PLT /VISTA: 2.5m = 14 4 m = 32 LIA-Origins-May 2012

  31. PLT based on the previousAustralianPILOT phase A study a b LIA-Origins-May 2012 d

  32. PLT Infrared 250 Mpxl. camera specifications. • FOV = ~ 40’ x 40’ (minimum) • Pixel scale ~ 0.15’’ (~ diffraction à 2.2µm) (pxl pitch: 10 µm) bettersamplingthan VISTA • FPA: 250 Mpxls 16 x 4 x 4 k , buttableTeledyne 4RG, cooledat 40 K (avalaible in 2012) • Spectral domain 2-4 µm (cut-offarray: 5 µm) • FiltersKshort, K dark, L short, (L’, M’) –narrow band filters (tbd), GRISMs (tbd). New filterLs (Antarctique) centredat 3.2 µm (Dl/l = 0.16) • Dimension array: 16 x 16 cm • Read-out noise <10 e- (5 e - HAWKI VLT) • Optical Scheme : cold diaphragm, cold pupil, AO mirror • GLAO system to alleviateresidual turbulence above 30 m Possible design of the IR camera, from Mora et al., 2010, ARENA3, p. 183

  33. Calculatedsensitivity of PLT/NISSA Point source sensitivity of the IR camera at the 2.5 m PLT (5 σ) in 1 hourintegration. Telescopeassumptions: T = 227 K; 5% emissivity; throughput: 50% LIA-Origins-May 2012

  34. NISSA NISSA NISSA NISSA

  35. Observingstrategy; Pipeline • PLT observingstrategy comparable to LSST • PLT willreactrapidly to LSST alerts and createalerts • Data management and archiving: similarprocedure as for LSST (through CC-IN2P3 Lyon) • Major differences • muchsmaller FOV (:20) • selected areas only(totalizing ~ 5000 sq.d.) • operating full time (7/7; 24/24) • dark time operation, mostlyat 2 µm • bright time operationat 3-5 µm, only • Technical/Technological drawbacks • Due to both, the extremelylimited data transmission bandwidth , and the hugeamount of generated data, the pre-processing and archivingwill have to bedoneon-site. • By experience, the very dry atmosphere (staticelectricity) make the requirements for all electronicdevicesratherdemanding LIA-Origins-May 2012

  36. other option understudy an off-axistelescope design 2.5 to 4 m G. Moretto (IPNL, Lyon) tbpresented to SPIE Amsterdam, July 2012 LIA-Origins-May 2012

  37. 4M ANTARCTIC TELESCOPE A 4 meter high dynamic range design with compatible performance to the best ground astronomical site! • Preliminary Concept • Two-Mirror (M2 + M3) Corrector • optimized across a wide FLAT 1x1 Deg2 FOV; • F/10 System Plate Scale = 5.15arcsec/mm; • 1x1 Deg2≅ 0.7m x 0.7m affordable FOV; • Wide-field for surveys • Off-axis design providing unprecedented • photometric and angular resolution • dynamic range for detection of faint • astronomical objects in the near • environment of bright sources • (extra-solar planets detection and • coronagraphyobservations);

  38. OPTICAL PERFORMANCE ACROSS 1X1DEG FOV Wide FOV and Dynamic Range in Antarctica • DL@K (2200nm) = CIRCLE DIA 0.277”for a 4M Telescope; • RMS DIAMETER ~ 85% Encircled Energy; • FLAT FOV; • ALL REFLECTIVE.

  39. WHY OFF-AXIS in ANTARCTICA? A high dynamic range design to be performance compatible to the BEST ground astronomical site! • A telescope design that reduces • the sources of light scattering; • Low scattered light observations and coronagraphic • capabilities in the infrared;low emissivity (essential) • Observing an important part of universe where • current concentric telescopes are blind because • of scattered light; • A tremendous advantage for studies of faint planets • near bright stars and faint nebulosity surrounding • young stars, where planets may be forming; • Natural-Filled-Aperture: no azimuthal PSF structure, • no missing or interpolated wavefront errors. • A natural advantages for interferometry and adaptive • optics performance!!

  40. The structure of the PLT Design Study workpackages RAMS CON CRAL/UKATC CRAL/CCIN2P3 SAGEM Fraunhofer IPA CRAL/FIZ/LAM RAMS CON CNR/FIZ/NO/ IPEV CNR/FIZ CNRS/FIZ EIE CNRS CNRS READY for a H-2020 proposal in 2013, possiblyincluding China as a full partner FP7 proposal (nov. 2010)

  41. Roadmaptoward a cuttingedge IR survey in Antarctica • PLT/NISSA isstill in construction: many options are still open to discussions • Which science? • The deepestwidefieldsurveyever in the 2-4 µm range • Identifycritical science programmes (darkenergy/darkmatter) • JustifyAntarticchoice (figures of merit/cost efficiency) • Time monitoring atvariousscales: from minutes to years • Field priorities, observingstrategyoptimization (needfeedback fromastro-community) • Whichultimate performances are requested? (optimal aperture) • WhichAntarcic site ismostappropriate? comparative qualification of the different sites (same instruments, same calibrations….) ishighlydesirable; (risks, logistics, costs) • Most efficient instrument configuration: Instrumental design studytakingintoaccount the polar specificities and the ultimatetechnological progresses (off-axis design, detectors, AO, energy production, telecom) • International collaboration (in particularwith China): management structure • Funding? Design study phase, Estimatecost, risks, ressources, logisticsrequirements • Optimizematching in the streamline of 2020’s groundbasedfacilities and space missions. LIA-Origins-May 2012

  42. Conclusions • The Antarctic conditions are optimal for a new deep NIR surveyfeaturing • 0.3’’ images almostpermanently • Widefieldcoverage • Repeated observations (Time domain exploration) • Extremesensitivity (100 nJyat K), • Unique photometricaccuracy • Extended spectral domainthrmal IR • Ideal conditions to operateWidefieldAdaptive Optics techniques. • Political/socio-economical aspects: • Antarcticais a unique ground for scientificcooperation. This canbeatthreat in the near future (AntarcticTreaty) • France/Italy are at the forefront of Antarcticresearchdevelopmentsat the Concordia station as well as China atKunlun. • Lots of technological aspects for industrialpartners: robotics, energy, transport, communications in harshenvironment • Cooperation on a world class projectishiglydesirablebetween China, Australia and Europe (consensus growing for a IR surveytelescope) • Support fromEuropean Commission (Horizon 2020) to besought for the DS phase Astronomy in Antarcticais an extremelypromising issue for a fruitful international collaboration on a world class meso-scaleproject. Let us fosterthisexciting prospect! LIA-Origins-May 2012

  43. First IAU Symp. (288) on AstrophysicsfromAntarctica Beijing 20 -24 August 2012 • useful links: • http://www.phys.unsw.edu.au/IAUS288/ • http://www.astronomy.scar.org/ • https://arena.oca.eu/ • https://sites.google.com/site/antarcticlargetelescope/ LIA-Origins-May 2012

  44. Thank you for your attention ! and thanks to the staff of Concordia station ! LIA-Origins-May 2012

More Related