1 / 13

4.2.1. Logaritmien laskusäännöt

4.2.1. Logaritmien laskusäännöt. Logaritmin laskusääntöjä Olkoon a, b > 0 ja k > 0, k ≠ 1 log k ab= log k a + log k b log k (a/b)= log k a - log k b log k a n = n · log k a E.9. a) lg2 + lg5 = lg (2  5) = lg10 = 1 b) lga 2 + lg(1/a) (a>0) = 2lga + lg1 - lga

leif
Download Presentation

4.2.1. Logaritmien laskusäännöt

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 4.2.1. Logaritmien laskusäännöt

  2. Logaritmin laskusääntöjä Olkoon a, b > 0 ja k > 0, k ≠ 1 logkab= logka + logkb logk(a/b)= logka - logkb logk an = n · logka E.9. a) lg2 + lg5 = lg (2  5) = lg10 = 1 b) lga2 + lg(1/a) (a>0) = 2lga + lg1 - lga =2lga + 0 - lga = lga c) Esitä lg3:n avulla lg3000 = lg(3  1000) = lg3 + lg 1000 = lg3 + 3

  3. E.10. Esitä yhtenä logaritmina • lna + ln6 b) ½ln16 + 1 c) 2ln4 – 3ln2 • a) lna + ln6 = ln6a • b) ½ln16 + 1 • = ln16½ + lne • = ln4 + lne = ln4e • c) 2ln4 – 3ln2 • = ln42 – ln23 • = ln16 – ln8 • = ln (16/8) • = ln2

  4. E.11. (t. 203a,c) • Olkoon a = logk2 ja b=logk3. Esitä a:n ja b:n avulla • logk (3/2) • = logk 3 – logk2 • = b – a • b) logk12 • = logk (4 · 3) • = logk 4 + logk3 = logk22 + logk3 • = 2logk2 + logk3 = 2a + b

  5. Logaritmin kantaluvun vaihtaminen

  6. 4.2.2. Eksponenttiyhtälöitä E.12. 2x = 7 lg2x = lg7 xlg2 = lg7 x = lg7 /lg2  2,807 tai ks. kantaluvun vaihto edellä

  7. E.13. (t. 210a) 3x+1 = 20 lg3x+1 = lg20 (x+1)lg3 = lg20 x  1,72

  8. E.14. Kuinka monessa vuodessa talletuksen arvo viisinkertaistuu, jos vuotuinen korko on 8% ? a = talletuksen arvo alussa 1,08x a = 5a | :a 1,08x = 5 lg 1,08x = lg 5 x  lg 1,08 = lg 5 x = lg 5/ lg1,08 =20,9 V: 21 vuodessa

  9. E.15. (t. 221b) 5x = 17  4x c  12,7

  10. 4.2.3. Logaritmiyhtälöitä logku = logkv  u = v (u, v > 0) E.16. (t. 212a) a) Ratkaise yhtälö log2 (3x – 1) = 1 Määrittelyehto: 3x – 1 > 0 eli x > 1/3 2 1 = 3x – 1 3x = 3 x = 1

  11. b) lgx + lg(x - 3) = 1 (x > 3) lgx(x-3) = lg 10 x(x - 3) = 10 x2 - 3x - 10 = 0, ratkaisukaavalla ( x = -2), x = 5

  12. E.17. 2lnx = 1 Mj: x>0 lnx = ½ x = e½ x = √e E.18. ln3 = -ln(1 – x) Mj: x < 1 ln3 = ln(1 – x)-1 3 = (1 – x)-1 3(1- x) = 1 1 - x = 1/3 x = 2/3

  13. E.19. (t. 223a) Määritelty, kun x > 0 x = 4

More Related