1 / 45

Calculation of a 2-4 Oil Cooler

Calculation of a 2-4 Oil Cooler.

leia
Download Presentation

Calculation of a 2-4 Oil Cooler

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Calculation of a 2-4 Oil Cooler A 33.5˚API oil has viscosity of 1.0 centipoise at 180˚F and 2.0 centipoise at 100˚F.49,600lb/hr of oil leaving a distilling column at 358˚F and is to be used in an absorption process at 100˚F.Cooling will be achieved by water from 90˚F to 120˚F.Pressure drop allowances of 10psi may be used on both streams along with a combined dirt factor of 0.004. engineering-resource.com

  2. Available for this service from a discontinued operation is 35in.ID 2-4exchanger having 454 1in.OD ,11BWG tubes 12׳0״ long laid out on 1¼-in.squre pitch. The bundle is arranged for six tube passes and vertical cut baffles are spaced 7in. apart. The longitudinal baffle is welded to the shell. • Is it necessary to use a 2-4 exchanger? • Will the available exchanger fulfill the requirements? engineering-resource.com

  3. 2-6 Shell and tube heat exchanger:- engineering-resource.com

  4. Temperature profile: T1(358) t2(120) T2(100) t1(90) L engineering-resource.com

  5. Solution:- • Exchanger shell side Tube side ID=35in. Number=454 Baffle spacing=7in. Length=12׳0״ Passes=2 OD,BWG=1in.,11 Pitch=1¼in.squre Passes=6 engineering-resource.com

  6. Hot fluid Cold fluid difference T1=358˚F t2=120˚F ∆t1=238˚F T2=100˚F t1=90˚F ∆t2=10˚F Temperature range:- (T1-T2) (t2-t1) 258˚F 30˚F engineering-resource.com

  7. LMTD:- LMTD= ∆t1-∆t2 ln(∆t1/∆t2) LMTD = 238-10 ln(238/10) LMTD =72˚F engineering-resource.com

  8. Correction factor:- • R= (T1-T2)/(t2 - t1) R=238/30 R=8.6 • S=(t2-t1)/(T1-t1) S=30/(358-90) S=0.112 engineering-resource.com

  9. engineering-resource.com

  10. True temperature difference:- • ∆t=FT×LMTD From table: FT=0.93 LMTD=72˚F ∆t=0.93×72 ∆t=66.96˚F engineering-resource.com

  11. Heat balance:- • Oil Q=W ×cp×(T1-T2) Q=49,600×0.545×(358-100) Q=6,980,000Btu/hr • Water Q=m×cp×(t2-t1) Q=23,2666.67×1.0×(120-90) Q=6,980,000.1Btu/hr engineering-resource.com

  12. engineering-resource.com

  13. Caloric temperatures:- • ∆t2/∆t1=10/238=0.042 • For API=33.5˚ and temperature range(258˚F) Kc=0.47(from table) • For Kc=0.47 and ∆t2/∆t1=0.042 • Fc=0.267 engineering-resource.com

  14. engineering-resource.com

  15. Caloric temperature of hot fluid: Tc=T2+Fc×(T1-T2) Tc=100+0.267×(258) Tc=165˚F • Caloric temperature of cold fluid: tc=t1+Fc×(t2-t1) tc=90+0.267×(30) tc=98˚F engineering-resource.com

  16. Hot fluid: shell side • Flow area as=1/2(ID×C׳×B)/144PT as=1/2(35×0.25×7)/144×1.25 as=0.17ft2 • Mass velocity Gs=W/as Gs=49,600/0.17 Gs=292000lb/(hr)(ft2) engineering-resource.com

  17. Viscosity: At Tc=165F (from table) µ=1.12cp µ=1.12×2.42 µ=2.71lb/(ft)(hr) • Equivalent diameter: De=0.99 in. (from table) De=0.99/12 De=0.0825ft engineering-resource.com

  18. engineering-resource.com

  19. engineering-resource.com

  20. Reynolds number: Res=DeGs/µ Res=0.0825×292000/2.71 Res=8900 jH=52.5 (from table) • Prandtl number:- Pr=(cµ/k) • For API=33.5˚ and µ=2.71 (from table) k(Pr)⅓=0.20Btu/(hr)(ft2)(˚F) engineering-resource.com

  21. engineering-resource.com

  22. engineering-resource.com

  23. engineering-resource.com

  24. Film coefficient: ho=jH× (k/De) × (Pr)⅓×Φs ho/Φs= 52.5 ×0.2/0.0825 ho/Φs=127 • Cold fluid: tube side • Flow area: a׳t=0.455 in. square at=(Nt×a׳t)/(144×n) at=(454×0.455)/(144×6) at=0.239ft2 engineering-resource.com

  25. engineering-resource.com

  26. Mass velocity: Gt=m/at Gt=232666.67/0.239 Gt=973500lb/(hr)(ft2) • Fluid velocity: V=Gt/(3600×ρ) V=973500/(3600×62.37) V=4.33fps engineering-resource.com

  27. Diameter: D=0.76 in./12 (from table) D=0.0633ft • Viscosity: At tc=98˚F µ=0.73 cp (from table) µ=0.73×2.42 µ=1.77 lb/(hr)(ft) engineering-resource.com

  28. engineering-resource.com

  29. Reynolds number: Ret=D× Gt/μ Ret=(0.0633 ×973500)/1.77 Ret=348156 • Film coefficient: For V=4.33fps (from table) hi=1010×0.96 hi=970 Btu/(hr)(ft2)(ºF) engineering-resource.com

  30. engineering-resource.com

  31. hio=hi×(ID/OD) hio=970×(0.76/1.0) hio=737 Btu/(hr)(ft2)(ºF) • Tube-wall temperature: tw=tc+ ho × (Tc-tc) (ho+hio) tw=98+ 127 × (165-98) (127+737) tw=108ºF engineering-resource.com

  32. At tw: μw=1.95×2.42 μw=4.72 lb/(hr)(ft) Φs=(μ/μw)¼ Φs=(2.71/4.72)¼ Φs=0.92 ho=127×0.92 ho=117 Btu/(hr)(ft2)(ºF) engineering-resource.com

  33. Clean overall coefficient Uc: • Uc= (hio×ho)/ (hio+ho) Uc=(737×117)/(737+117) Uc=101 Btu/(hr)(ft2)(ºF) engineering-resource.com

  34. Design overall coefficient UD: • UD=Q/(A× ∆t) A(total)=454×12ft×(0.2618ft2/lin ft) A=1425ft2 UD=6980000/(1425×66.96) UD=73.15 Btu/(hr)(ft2)(ºF) engineering-resource.com

  35. Dirt factor Rd: • Rd=(Uc-UD)/UcUD Rd=(101-73.15)/(101×73.15) Rd=0.00377 (hr)(ft2)(ºF)/Btu Rd (required) 0.004 Rd(calculated) 0.00377 engineering-resource.com

  36. Pressure drop: (on shell side) • For Res=8900 (from table) f=0.00215ft2/in.2 • No of crosses, N+1=12L/B N+1=(12 × 12)/7 N+1=20.1 ( Say,21) • Ds=35 in./12 Ds=2.92ft engineering-resource.com

  37. engineering-resource.com

  38. S( specific gravity)=0.82 (from fig.) engineering-resource.com

  39. ∆Ps = f×Gs2×Ds×(N+1) 5.22×1010×De×s×Φs ∆Ps =0.00215×2920002×2.92×42 5.22×1010×0.0825×0.82×0.92 ∆Ps =7.0psi (allowable=10psi) engineering-resource.com

  40. Pressure drop: (on tube side) Ret =34815.6 (from fig.) f=0.000195ft2/in.2 ∆Pt=(f×Gt2×L×n)/(5.22×1010×Ds×Φt) ∆Pt= 4 psi Gt=973500,v2/2g=0.13 (from fig.) ∆Pr=(4×n×v2)/(2g×s) ∆Pr=3.2 psi ∆PT=∆Pt+∆Pr=7.2psi(allowable=10psi) engineering-resource.com

  41. engineering-resource.com

  42. engineering-resource.com

  43. 2-4 Shell and tube heat exchanger:- engineering-resource.com

  44. Only replace value of n=6 to n=4 • At=0.3585 • Gt=649000 • V=2.89fps • Ret=23210 • hi=760 Btu/(hr)(ft2)(ºF) • hio=577 Btu/(hr)(ft2)(ºF) • tw=110ºF • ho=117 Btu/(hr)(ft2)(ºF) engineering-resource.com

  45. Uc=94 Btu/(hr)(ft2)(ºF) • Rd=0.003 (hr)(ft2)(ºF)/Btu • F=0.00025 • ∆Pt=1.53 psi ,v2/2g =0.065 • ∆Pr=1.04 psi • ∆PT=∆Pt+∆Pr=2.57psi (allowable=10psi)s So,2-6 STHE is more suitable as compare to 2-4 STHE. engineering-resource.com

More Related