cara penanganan sedimen pantai n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
Cara Penanganan Sedimen Pantai PowerPoint Presentation
Download Presentation
Cara Penanganan Sedimen Pantai

play fullscreen
1 / 38

Cara Penanganan Sedimen Pantai

421 Views Download Presentation
Download Presentation

Cara Penanganan Sedimen Pantai

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Cara Penanganan Sedimen Pantai Kuliah ke-10 Pengendalian Sedimen dan Erosi Wahyu Widiyanto Teknik Sipil Unsoed

  2. Cara-cara Penanganan Sedimentasi di Pantai • Dua masalah di daerah pantai yang dipengaruhi oleh transpor sedimen adalah erosi dan sedimentasi. Penanganan masalah secara buatan (artifisial) dilakukan ketika mekanisme perlindungan secara alamiah tidak lagi memadai.

  3. Erosi atau Sedimentasi? • Beberapa jenis bangunan pantai dimaksudkan untuk melindungi pantai dari erosi seperti: • tembok laut, • revetment, • groin, dan • pemecah gelombang lepas pantai. • Di pihak lain, beberapa jenis bangunan ditujukan untuk mengatasi sedimentasi seperti • jetty, • pemecah gelombang, dan • bangunan bawah air (underwater sill).

  4. Selain dengan membangun konstruksi bangunan sipil (hard structure), dikenal pula perlindungan pantai secara soft structure. Termasuk dalam jenis ini adalah sand nourishment, sand by passing, beach management system dan artificial reef (terumbu karang buatan).

  5. Tembok Laut (Seawall)

  6. Revetment

  7. Groin (groyne)

  8. Groin

  9. Pemecah gelombang lepas pantai (Detached breakwater) Daratan yang muncul di belakang pemecah gelombang lepas pantai disebut TOMBOLO

  10. Jetty • Jetty adalah bangunan tegak lurus pantai yang diletakkan pada kedua sisi muara sungai yang berfungsi untuk mengurangi pendangkalan alur oleh sedimen pantai.

  11. Pengaruh pembangunan jeti terhadap pantai di sekitarnya

  12. Pemecah Gelombang • Apabila kapal-kapal yang akan berlabuh di pelabuhan berukuran besar maka alur yang diperlukan biasanya juga besar (panjang, lebar dan dalam). Hal ini dapat menambah masalah yang berhubungan dengan pengerukan. Seringkali operasi pengerukan harus dilakukan di perairan yang terbuka. Ketika pengaruh gelombang mempersulit pengerukan, sering akan lebih ekonomis apabila alur pelayaran dilindungi dengan breakwater. Perlindungan dapat mengurangi jumlah kebutuhan pengerukan atau membuat operasi pengerukan lebih efisien.

  13. Layout Pelabuhan Kashima

  14. Pengerukan • Pengerukan (dredging ) dapat didefinisikan sebagai pengangkatan material dari dasar daerah perairan ke permukaan dan membawanya ke jarak tertentu. • Kegiatan ini cukup luas cakupannya, dari pengerukan di saluran drainasi hingga pengerukan mineral di lepas pantai dengan teknik yang sangat kompleks.

  15. Jenis kapal keruk • Secara garis besar pengerukan da pat dikelompokkan menjadi 2 jenis yaitu pengoperasian secara mekanis dan pengoperasian secara hidraulis. Pengerukan mekanis lebih dulu dipakai karena sederhana dan serupa dengan mesin keruk di darat. Termasuk dalam kelompok ini adalah dipper, bucket dan ladder. Bucket dapat dibagi lagi menjadi jenis grapple, dragline, dipper dan bucket ladder. Dalam pengerukan yang dioperasikan secara hidarulis, material yang akan dipindahkan terlebih dahulu dibuat lepas dan dicampur dengan air untuk kemudia n dipompa sebagai fluida. Termasuk dalam jenis ini adalah kapal keruk hisap dustpan (dustpan dredger), kapal keruk hisap lumpur (suction dredger), kapal keruk potong hisap (suction cutter dredger) , kapal keruk hopper potong hisap(hopper suction cutter dredger).

  16. Pengerukan mekanis mempunyai keuntungan dapat dioperasikan di lokasilokasi yang terbatas (dock, jetty) tetapi tidak mempunyai kemampuan mengangkut material secara kontinyu dalam jarak yang jauh. Saat ini pengerukan hidraulis lebih banyak digunakan karena relatif efisien, serbaguna dan ekonomis.

  17. Ambang Bawah Air (Underwater Sill) • Ambang bawah air (underwater sill- UWS) adalah struktur yang dibangun di dasar laut dan elevasi puncaknya masih di bawah muka air. Struktur ini dapat diletakkan di sekeliling kolam labuh, kolam putar atau alur pelayaran, dimaksudkan untuk mengurangi proses sedimentasi yang terjadi di suatu pelabuhan.

  18. Pembangunan UWS telah dikerjakan di Pelabuhan Kumamoto Jepang. Diperkirakan endapan yang terjadi di alur maupun kolam labuh bisa berkurang. Tingkat pengendapan yang terjadi turun 30 % sampai 50% untuk tinggi ambang 1,0 – 1,5 m (Semen Gresik, 1999). Di Indonesia, UWS selesai dibangun pada tahun 2000 di Pelabuhan P.T. Semen Gresik (Persero) Tbk, Tuban. UWS tersebut dirancang dengan bahan beton pracetak, berbentuk T terbalik, dengan tinggi 2 m, panjang 6 m dan lebar dasar 6 m, sedangkan tebal dinding 20 s.d. 30 cm. Hubungan antar dinding dilakukan dengan lembaran karet berkualitas tinggi (rubber sheet). Bangunan UWS ditempatkan di dasar laut dan didukung dengan tiang pancang bambu.

  19. Struktur yang memiliki kesamaan fungsi dengan UWS adalah silt screen. Perbedaannya terletak pada bahan yang digunakan, dimana pada silt screen tidak dipakai beton tetapi hanya suatu tabir tipis dengan pemberat di bawahnya dan pelampung di bagian atas. Yuwono (2001) mengusulkan dipertimbangkannya pemasangan silt screen sebagai kelanjutan dari UWS yang telah dibangun di sekitar kolam labuh dan kolam putar. Silt screen diusulkan untuk dibangun di kirikanan alur, terutama alur yang masih dekat dengan littoral zone. Bilamana silt screen dibangun, lokasi di sekitarnya harus dilengkapi dengan rambu-rambu navigasi yang baik agar tidak saling mengganggu dengan nelayan yang menebar jaring (mencari ikan).

  20. Metode Fluidisasi • Metode pengerukan relatif mahal, terutama jika volume yang dikeruk tidak terlalu besar. Hal ini karena biaya mobilisasi alat dan biaya dasar lainnya akan mendominasi biaya operasional yang sesungguhnya (Triatmadja, 2001). Metode fluidisasi diharapkan untuk bisa mengatasi permasalahan ini. Metode fluidisasi masih relatif baru di bidang rekayasa pantai. Namun sesungguhnya metode ini telah sangat dikenal di bidang teknik kimia (reaktorreaktor banyak yang menggunakan prinsip fluidized bed ). Sedangkan di bidang teknik penyehatan, metode ini dipakai untuk pembilasan media filter pada sistem pasir cepat. Di kedua bidang teknik tersebut umumnya yang digunakan adalah fluidisasi satu dimensi. Untuk penanggulangan sedimentasi di pantai, metode fluidisasi dikembangkan untuk mengusik sedimen hingga terfluidisasi yang akhirnya dapat mengalir secara gravitasi ke area lain yang lebih rendah.

  21. Pada metode fluidisasi diperlukan satu atau beberapa pipa dengan diameter relatif besar yang ditanam di dasar saluran (muara) atau di dalam lidah pasir yang akan dipotong. Pipa tersebut dipasang memanjang sepanjang saluran. Diameter pipa dibuat sedemikian rupa sehingga kecepatan aliran kecil dan kehilangan tinggi tenaga akibat gesekan dengan pipa relatif kecil pula. Pipa tersebut diberi lubang di sebelah kanan dan kirinya, dan jarak antar lubang yang berdekatan. Pada ujung hulu, pipa dihubungkan dengan pompa, yang memompa air ke dalam pipa

  22. fluidizer. Tekanan yang cukup tinggi dari air di dalam pipa akan memancar melalui lubang fluidisasi dan mengusik pasir yang menutupnya hingga terfluidisasi menjadi slurry. Slurry tersebut diharapkan dapat mengalir ke arah hilir akibat arus eksternal, arus yang ditimbulkan oleh semprotan, atau dapat dengan mudah dipompa ke luar. Dengan demikian yang tersisa tinggal lubang panjang sepanjang pipa fluidisasi.