1 / 6

设数法求组合图形的面积

设数法求组合图形的面积. 宁波市鄞州区东湖小学 张明菲. 设数法求组合图形的面积. 例 1 :如图三角形 ABC 中, AD 垂直于 BC , CE 垂直于 AB ,且 AD 的长是 8 厘米, CE 的长是 7 厘米, AB 边和 BC 边的和是 21 厘米,求三角形 ABC 的面积。. 设AB长x厘米,则BC长(21-x)厘米。. 7x÷2 = 8(21-x)÷2. 8. 7. x = 11.2. S △ABC = 11.2×7÷2 = 39.2 cm 2. 设数法求组合图形的面积.

latona
Download Presentation

设数法求组合图形的面积

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 设数法求组合图形的面积 宁波市鄞州区东湖小学 张明菲

  2. 设数法求组合图形的面积 例1:如图三角形ABC中,AD垂直于BC,CE垂直于AB,且AD的长是8厘米,CE的长是7厘米,AB边和BC边的和是21厘米,求三角形ABC的面积。 设AB长x厘米,则BC长(21-x)厘米。 7x÷2 = 8(21-x)÷2 8 7 x = 11.2 S△ABC= 11.2×7÷2= 39.2cm2

  3. 设数法求组合图形的面积 例2:一个长方形中画了一些线段,已知其中的三块面积分别是13dm2,15dm2,74dm2,问:阴影部分的面积 =( )dm2。

  4. 设数法求组合图形的面积 例2:一个长方形中画了一些线段,已知其中的三块面积分别是13dm2,15dm2,74dm2,问:阴影部分的面积 =( )dm2。 a S△BCF= a+b+c S△ADE+S△BCE c =15+a+74+13+b b =102+a+b 阴影部分面积 = 102dm2

  5. 设数法求组合图形的面积 例3:已知正方形ABCD的面积是90平方厘米,三角形ADE中,AD=3DE,求三角形ADE的面积。 设ED长a厘米,则AD长3a厘米。 S△AED=a × 3a ÷ 2 = 1.5a2 3a 3a × 3a = 9a2 = 90 a a2 = 10 S△AED= 1.5×10 = 15cm2

  6. S BCEF=(6+8)×a÷ 2 = 7a 设数法求组合图形的面积 例4:图中FB和EC都与AD垂直,FB=8cm,EC=6cm,AQ=5cm,PD=7cm,六边形ABCDEF的面积 =( )cm2。 设PQ长a厘米。 S△AFB= 8×(5-a)÷ 2 = 20-4a 8 6 5-a 7-a a S△ECD= 6×(7-a)÷ 2 = 21-3a (20-4a)+( 21-3a )+7a = 41 cm2

More Related