Factoring with trig functions

# Factoring with trig functions

## Factoring with trig functions

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
##### Presentation Transcript

1. Factoring with trig functions

2. Factoring ChartThis chart will help you to determine which method of factoring to use.TypeNumber of Terms 1. GCF 2 or more • Difference of Squares 2 • Trinomials 3

3. Always look for a GCF first! Find the GCF

4. Difference of Squares

5. No Factor Yes Yes Yes Do you have a GCF? Are the Difference of Squares steps true? Two terms? 1st term a perfect square? 2nd term a perfect square? Subtraction? Yes

6. Factoring Trinomials

7. 3 3 3 3 ( tanx- 12)( tanx- 2) 3tan2 x– tanx + 8 1) Multiply 3 • (8) = 24; tanx2- tanx+ 24 2) Set up ( ) ( tanx)( tanx) What multiplies to 24 and adds to -14? 4) Simplify (if possible). 5) Move denominator(s)in front of “x”. ( tanx- 4)( 3tanx - 2)

8. 2 2 2 2 ( secx- 6)( secx+ 3) 2sec2 x– 3secx – 9 1) Multiply 2 • (-9) = -18; secx2 – 3secx - 18 2) Set up ( ) ( secx)( secx) • What multiplies to -18 and adds to -3? 4) Simplify (if possible). 5) Move denominator(s)in front of “x”. ( secx- 3)( 2secx + 3)

9. 6 6 6 6 sinx(sin x + 4)( sinx+ 9) 6sinx3+ 13sinx2 + 6sinx 1) Factor GCF sinx(6sinx2 + 13sinx + 6) 2) Multiply 6 • (6) = 36; Sinx(sinx2 + 13sinx + 36) sinx( sinx)( sinx) 3) Set up ( ) 4) What multiplies to 36 and adds to 13? 5) Simplify (if possible). 5) Move denominator(s)in front of “x”. sinx(3sinx + 2)( 2sinx + 3)