1.09k likes | 1.23k Views
u/U = sin( /2); = y/. L A M I N A R. T A B L E 9.2. Given U and viscosity table 9.2 Sketch (x), *(x), w (x). u/U = sin( /2); = y/. Sketch (x), *(x), w (x). u/U = sin( /2); = y/. …. . W H I C H H A S M O R E F D ?. A. VS. B. U.
E N D
u/U = sin(/2); = y/ L A M I N A R T A B L E 9.2 Given U and viscosity table 9.2 Sketch (x), *(x), w(x)
u/U = sin(/2); = y/ Sketch (x), *(x), w(x)
u/U = sin(/2); = y/ …..
W H I C H H A S M O R E FD ? A VS B
U Which plate experiences the most drag? LAMINAR / dp/dx = 0 Incompressible, steady, 2-D… A B
L=L U Which plate experiences the most drag? A b=4L FD = wdA A = bL Cf = w/( ½ U2) = 0.730/Rex FD = 0.73b(LU3)1/2 FD(A) = 0.73(4L)(LU3)1/2 FD(B) = 0.73(L)(4LU3)1/2 FD(A)/FD(B) = 2 L=4L B b=L
L U A b How Does Drag Change if 2U?
L U How Does Drag Change if 2U? A b FD = wdA A = bL Cf = w/( ½ U2) = 0.730/Rex FD = 0.73b(LU3)1/2 If U goes to 2U, FD goes to (8)1/2
(*/ = 0.344) Table 9.2
y / u / U Sinusoidal, parabolic, cubic look similar to Blasius solution.
u/Umax = (y/)1/7 u/Ue = 2(y/) – (y/)2
Laminar boundary-layer over flat plate, zero pressure gradient U = 3.2 m/s 0.9 m 1.8 m u/U = sin[(/2)(/y)] Drag = ? using Table 9.2
u/y|Wall = /y U[(2y/) – (y/)2]y=0 u/y|Wall = U2/ PIPE: u/y|Wall = Ucl2/R Fully developed laminar flow
u/y = /y {y/}1/7 = 1/7 {y/}-6/7 u/y|y=0 =
So how get wall for turbulent velocity profile u/U0 = (y/)1/7 ?
u/Uo = (y/)1/7 w = 0.0332 (V)2[/(RV)]1/4 Eq(8.39) V/Uc/l = (2n2)/[(n+1)(2n+1)] Eq(8.24) w = 0.0233 (U0)2[/(Uo)]1/4
If Re transition occurs at 500,000 what is the skin friction drag on fin?
FD = CD (½ Uo2A) Laminar Flow – starting at x=0 CD = 1.33/ReL1/2 Turbulent Flow – starting at x=0 CD = 0.0742/Re1/5 {u/U = (y/)1/7} for 5x105<ReL<107 CD = 0.455 /(log ReL)2.58 For ReL < 109
Calculating transition location, x: Assume xtr occurs at 500,000 Rex = Ux/ = 500,000 ReL = UL/ = 1.54 x 107 Rex/ReL = xtr/L = 500,000 / 1.54 x 107 xtr = 0.0325 L = 0.0325 x 1.65 = 0.0536 m
ReL = UL/ = 1.54 x 107 Turbulent Flow – starting at x=0 CD = 0.455 /(log ReL)2.58 xtr = 0.054m L = 1.65m
FLAT PLATE dp/dx = 0 LAMINAR: From Theory CD = 1.33 / ReL1/2 Eq. 9.33 TURBULENT: From Experiment 5x105< ReL<107 xtransition = 0 CD = 0.0742/ReL1/5 ReL<109 xtransition = 0 CD = 0.455/(logReL)2.58
For Re transition of 500,000 and 5x105 < ReL < 109 CD = 0.455/(log ReL)2.58 – 1610/ReL (Eq. 9.37b) CD = 0.00281 – 0.000105 = 0.0027 ~ 4% less FD = CD2LH(1/2)U2 = 91.6 N 2 sides so 2 x Area
CD = FD/( ½ Uo2); Cf(x) = w(x)/(1/2 Uo2) CD ~ 0.0028 Smooth flat plate, dp/dx = 0; flow parallel to plate
CD = FD/( ½ Uo2); Cf(x) = w(x)/(1/2 Uo2) Where does transition occur for these data? These data include rough plates?
Plastic plate falling in water, find terminal velocity - + z DRAG BOUYANCY WEIGHT Given of water and plastic - z Sum of forces = 0 FD = CD ½ U2A
Plastic plate falling in water, find terminal velocity - + z DRAG BOUYANCY WEIGHT Sum of forces = 0 Drag Force = f (U) - z Assume: turbulent flow, transition at leading edge, doesn’t flutter, 5 x 105 < ReL < 107 Then CD = 0.0742/Reh1/5
Net Force = 0 = FB + FD - W FB – W = (plastic - water) g (hLt) FD = CD ½ U2A = [0.0742/Reh1/5] ½ water U2A Reh = Uh/ Solving for U get 11.0 ft /sec Check Re number: 1.86 x 106 5 x 105 < ReL < 107
T H E E N D
U2 = ? P2 – P1 = ? 2= 1.2 in. U1 = Uo = 80 ft/sec 1= 0.8 in.
Continuity U1A1eff = U2A2eff A1eff = (h -2 *1) (h -2 *1) A2eff = (h -2 *2) (h -2 *2) *1 u/U = y/ = * = 0.8 in *1 *1
Continuity U1A1eff = U2A2eff A1eff = (h -2 *1) (h -2 *1) A2eff = (h -2 *2) (h -2 *2) *2 *2 = 1.2 in *2 *2
First a bit of mathematic legerdemain before attempting Ex. 9.3 ~ = ?