1 / 51

Semiconductor devices and opto-electronics

Semiconductor devices and opto-electronics. Meint Smit Leon Kaufmann Xaveer Leijtens. Opto-Electronic Devices Group Eindhoven University of Technology. Course information. Opto-electronics: Book: Gerd Keiser, Optical Fiber Communications 3rd edition, McGraw-Hill, obligatory!

Download Presentation

Semiconductor devices and opto-electronics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Semiconductor devices and opto-electronics Meint Smit Leon Kaufmann Xaveer Leijtens Opto-Electronic Devices Group Eindhoven University of Technology

  2. Course information • Opto-electronics: • Book: Gerd Keiser, Optical Fiber Communications 3rd edition, McGraw-Hill, obligatory! • Contact: Xaveer Leijtensx.j.m.leijtens@tue.nl 040 – 247 5112 • Electronic devices: • Book: Linda Edwards-Shea, The Essence of Solid- State Electronics, Prentice Hall, obligatory! • Contact: Leon Kaufmannl.m.f.kaufmann@tue.nl 040 – 247 5801 • Website: http://oed.ele.tue.nl (education)

  3. Course overview

  4. Contents semiconductor devices • Recapitulation: electrons in atoms, introduction to quantum mechanics • Solid state materials: crystal structures, energy band diagrams of insulators, metals and (un)doped semiconductors • Semiconductors and carrier transport • Principle of operation of pn junction diodes • Fundamentals of MOSFETs • CMOS technology (incl. video demonstration)

  5. OGO3.2Free space optical communication Kickoff Meeting Dec 1 in MA1.41 13:30h

  6. Contents Opto-Electronics

  7. Examination • Closed-book examination, formula sheet will be provided • Electronic devices: Edwards-Shea, chapter 1-8 • Opto-electronics: Keiser

  8. TRANSMITTER RECEIVER – – – + + Optical communication FIBRE

  9. Electromagnetic spectrum • Optical communication wavelength:  = 1500 nmcorresponds to  = c/  200 THz = 200.000 GHz • 1% = 2 THz = 2000 GHz • EDFA-bandwidth 30 nm  4 THz

  10. Fiber core SiO2+ GeO2 Ø 10 mm n  1.443 SiO2 Cladding Ø 125 mm n  1.44 Primary coating (soft) Ø 400 mm Secondary coating (hard) Ø 1 mm Standard Single-Mode (SM) Fiber

  11. – Optical source TRANSMITTER FIBER Performance Modulation speed Fiber-coupled power +

  12. Light Emitting Diode (LED) + Typical performance data Power in MM-fiber: 100 mW Power in SM-fiber: 1 mW Direct Modulation Bandwidth: 100MHz

  13. Laser Typical performance Power (in fiber): 5-10 mW Max: 100-300 mW Direct Modulation Bandwidth: 1-10 GHz

  14. + – Photodiode detector Typical performance data Responsivity: ~1 mA / mW Bandwidth: 1-20 GHz

  15. First Generation, ~1975, 0.8 mm MM-fiber, GaAs-laser or LED Second Generation, ~1980, 1.3 mm, MM & SM-fiber InGaAsP FP-laser or LED Third Generation, ~1985, 1.55 mm, SM-fiber InGaAsP DFB-laser, ~ 1990 Optical amplifiers Fourth Generation, 1996, 1.55 mm WDM-systems 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Wavelength (mm) Optical communication systems 2 dB/cm Attenuation

  16. optical fiber optical receiver optical transmitter Multiwavelength Transmitter Multiwavelength Receiver MUX DMX WDM-transmission

  17. Er-doped fiber PUMP LASER 0.98 mm or 1.48 mm MUX FILTER Erbium-Doped Fiber Amplifier (EDFA)

  18. Synchronous Digital Hierarchy Europe SDH: Synchronous Digital Hierarchy STM: Synchronous Transport Module US & Japan SONET: Synchronous Optical Network OC: Optical Carriers

  19. (10x / 2.5 yrs) 5 yrs Trunk transmission capacity WDM experiments ETDM Si electronics installed (10x / 6 yrs)

  20. 1 Tb/s 100 Gb/s 256 ‘04? ‘80 ‘00 ‘86 ‘97 ‘89 ‘83 ‘96 • • • • • • • • ‘99 • 10 Gb/s 64 ‘98 • # WDM-channels 1 Gb/s 16 0.1 Gb/s 4 ‘98 • 1 0.01 0.1 1 10 100 Channel bitrate (Gb/s) Trunk transmission capacity

  21. Undersea cables

  22. Undersea cable

  23. < 10000 km < 10 Tbit/s Global Network Wide Area Network < 100 km < 1 Tbit/s Metropolitan/Regional Area Optical Network FTTB Client/Access Networks ATM < 20 km 100M - 10 Gbit/s ISP Cable modem Networks SDH/ SONET Gigabit Ethernet ATM FTTH Corporate/ Enterprise Clients Cable PSTN/IP Mobile Courtesy: A.M.J. Koonen Optical Transport Network

  24. 1 1 in out 2 2 X X X X Integrated optical cross-connect Dimensions: 8x12 mm2

  25. Fibre propagation n1 n2

  26. z=0 z=L Attenuation z=0 z=L Dispersion Fiber performance

  27. 1000 CVD (Chemical Vapor Deposition) 100 Attenuation (dB/km) 10 • 20 dB/km (Corning) 1 0.16 dB/km 0.1 1960 1970 1980 1990 2000 Optical attenuation in glass

  28. IR band edge Rayleigh scattering 1.5 UV absorption 1.0 Attenuation (dB/km) OH--peak 0.5 0.16 dB/km 0.2 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Wavelength (mm) Fiber attenuation (SiO2)

  29. A note on dB and dBm • dB • optical signals: • electrical signals: • dBm • absolute power value (with 1 mW as reference) • power level in dBm:  electrical dB = 2 x optical dB

  30. n2<n1 2 n2<n1 n2<n1 2 1 1 1= c 1 >c 1 c n1 n1 n1 Snell’s law Critical angle Total internal reflection Reflection & refraction

  31. Multimode fiber Critical angle: n0 n0 n2 0 n1 Maximum entrance angle: c Numerical aperture: Numerical Aperture

  32. L c n1 n2 t Dispersion (intermodal)

  33. dBe 0 3 6 dBo 0 1.5 3 t FWHM n DT t D o De Rule of thumb: Bandwidth (incoherent) Cross talk Bandwidth and bit rate

  34. SM Single-Mode MM-SI Multi-Mode Step Index MM-GI Multi-Mode Graded Index Fiber types refractive index

  35. Fiber classification (1) MM-SI: Multi Mode - Step Index fiber Core diameter 50 - 400 m Cladding 125 (500) m 2nd coating 250 - 1000 m NA 0.16 - 0.5 Attenuation 1 - 4 dB/km Bandwidth 6 - 25 MHz.km Application Short distance, low cost limited bandwidth

  36. Fiber classification (2) MM-GI: Multi Mode - Graded Index fiber Core diameter 50 m standard Cladding 125 m 2nd coating 200-1000 m NA 0.2 - 0.3 Attenuation 1 dB/km (1300 nm) Bandwidth 150 MHz.km - 2 GHz.km Application Medium distance communication LED/Laser sources

  37. Fiber classification (3) SM-SI: Single Mode - Step Index fiber Core diameter 3-10 m Cladding 50-125 m 2nd coating 200-1000 m NA ~0.1 (not used) Attenuation 0.20@1550 - 0.4@1300 dB/km Bandwidth >> 500 MHz.km Application Long distance communication Lasers, standard fiber

  38.  The wave equation Solutions to Maxwell’s equations: phase fronts Plane wave: Spherical wave:

  39. kx k kx  kz kz x x  z z Wave vector and decomposition

  40. kx phase fronts k+ x absorber kx+ metallic plates x + kz kz z - kx- k- z Interference

  41. metallic plates x kz d z The metallic waveguide

  42. 2 1 0 waveguide d m=0 m=1 m=2 Modes & Rays

  43. c2 kx substrate modes superstrate modes n1k0 c0 m=4 m=3 m=2 guided modes m=1 m=0 kz n2k0 n0k0 n1k0 n2 n1 n0 m=4 m=0 m=1 m=2 m=3 Optical waveguide modes

  44. d 0 1 2 a Mode intensity profiles • Optical modes: • Excitation of modes: Planar: Single-mode if V   Fiber: Single-mode if V  2.405

  45. V-parameter • V number: determines how many modes a fiber supports • Lowest order mode HE11 has no cut-off • Single-mode fiber:

  46. Number of modes • Number of modes in step-index fiber • Optical power in the cladding for large values of V

  47. n1 HE11 TE01 TM01 EH11 HE31 HE12 n2 0 1 2 3 4 5 6 Step index fiber modes (2) Effective index b/k as a function of Single-mode fiber: V 2.405

  48. Birefringence • HE11: • Birefringence: difference in effective refractive indices between two polarization modes • Fiber beat length: phase difference between the two polarization modes is  Vertical mode Horizontal mode

  49. Fiber materials • Silica glass fiber • starting material: pure silica (SiO2) in the form of fused quartz (amorphous) • modification of refractive index by addition of impurities • lowering refractive index : B2O3, F • raising refractive index : P2O5, GeO2 • Polymer optical fiber (POF) • large core (multimode) • large refractive index difference between core and cladding • easy handling • relatively high losses

  50. Losses in polymer optical fiber • Absorption loss in POF >>> Absorption loss in Silica fiber search for low loss polymers • PMMA (Poly Methyl Metacrylate) • PS (Polystyrene) • FA (Fluoro acrylate) • Typical absorption levels: 100 dB/km • Low loss windows: several windows in the range 500-800 nm • New material development: perfluorinated polymer 50 dB/km from visible to 1600 nm • Core type • Step index • Graded index

More Related