1 / 34

MATH/CHEM/COMP 2010

MATH/CHEM/COMP 2010. INTRINSIC FORMULA FOR FIVE POINTS ATIYAH DETERMINANT Dragutin Svrtan. Euclidean and Hyperbolic Geometry of point particles: A progress on the tantalizing Atiyah-Sutcliffe conjectures.

kitra
Download Presentation

MATH/CHEM/COMP 2010

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MATH/CHEM/COMP 2010 INTRINSIC FORMULA FOR FIVE POINTS ATIYAH DETERMINANT Dragutin Svrtan

  2. Euclidean and Hyperbolic Geometry of point particles: A progress on the tantalizingAtiyah-Sutcliffe conjectures • Motivation:BERRY-ROBBINS PROBLEM(1997) coming from spin-statistics in particle physics • Cn(R^3):=configuration space of n ordered distinct points/particles in R^3 • PROBLEM: Does there exists a continuous equivariant map f_n:C_n(R^3)U(n)/T^n(=space of n orthogonal complex lines) ? • (leading to a connection between classical and quantum physics) • ATIYAH’s candidate map (2001) (via elementary construction, but not yet justified even for small n ) gave a renaissance to classical (euclidean and noneuclidean ) geometries and interconnects them with many other areas of modern mathematics.

  3. 3 POINTS INSIDE CIRCLE • Three points 1,2,3 inside circle (|z|=R) • 3 point-pairs on circle • p1 (12) (13) • p2 (21) (23) • p3 (31) (32) • point-pair u,v define quadratic with these roots • (z-u)*(z-v) • 3 point-pairs ---> 3 quadratics • p1, p2, p3 ---> p1, p2, p3 • THEOREM 1 (Atiyah 2001). For any triple 1,2,3 of distinct points inside circle the 3 quadratics are linearly independent • Remark: Atiyah gave a synthetic • proof which unfortunately does not generalize to more than 3 points

  4. SPECIAL CASE OF 3 COLLINEAR POINTS • (31)=(32)=(21) |---x----x------x--------| (12)=(13)=(23) u 1 2 3 v(≠u) p1 (z-u)^2 p2 (z-u)*(z-v) p3 (z-v)^2 clearly linearly independent || l*p2+ m*p3 always has v as root || but p1 has u,u as roots and u ≠ v THEOREM1  3-by-3 determinant of coefficient matrix 1 –v12-v13 v12*v13 det(M3) = det( 1 -v21-v23 v21*v23 ) is nonzero 1 -v31-v32 v31*v32

  5. NORMALIZED DETERMINANT D3_R • Atiyah defined the normalized determinant D3=D3_R (continuous on unordered triples of distinct points in open disk of radius R) ...Atiyah’s geometric energy • det(M3) • D3:= -------------------------------------- • ( v12-v21)*(v13-v31)*(v23-v32) • D3=1 for collinear points • THEOREM2 (ATIYAH): D3R1 AND D3=1 ONLY FOR COLLINEAR TRIPLES. • (TH.2 => TH.1) • R N LIMIT • Points on “circle at N” are directions in plane • TH.1 and TH.2 are also true for R =N .

  6. EXPLICIT FORMULAS FOR D3 • det(M3) • D3:= -------------------------------------- (original Atiyah’s definition) • ( v12-v21)*(v13-v31)*(v23-v32) • Extrinsic formula: • (v21 – v31) (v13 – v23) (v12 -v32) • D3= 1 + ---------------------------------------------- • (v12 - v21) (v13 - v31) (v23 - v32) • INTRINSIC FORMULA in terms of hyperbolic angles A,B,C (0< A+B+C< π): • -------------------------------------------------------------------------------------------------------------- • D3 = ½*(cos^2(A/2)+ cos^2(B/2)+ cos^2(C/2)) – ½√(cos(A+B+C)/2*cos(-A+B+C)/2*cos(A-B+C)/2*cos(A+B-C)/2) (algebraic trigonometric !)

  7. Hilbert’s Arithmetic of Ends

  8. INTRINSIC FORMULA for D3 • INTRINSIC FORMULA in terms of side lengths a,b,c (p=(a+b+c)/2 semiperimeter) • D3 = 1+exp(-p)* ∏ sinh(p-a)/sinh(a) • (=> TH2 Intrinsic proof) • EUCLIDEAN CASE: If we define 3-point function by • d3(a,b,c):=(-a+b+c)*(a-b+c)*(a+b-c) • then • D3= ½*(cos^2(A/2)+ cos^2(B/2)+ cos^2(C/2)) • D3=1+ d3(a,b,c)/8*a*b*c

  9. SEVEN NEW ATIYAH-TYPE TRIANGLE’S ENERGIES • By switching simultaneously the directions on any edge of a set of edges of a triangle 123 we get 7 new Atiyah-type energies D3_ ε, ε=100,...,111 (with D3_ ε=D3 for ε =000) • E.g. • D3_001= 1-exp(-p+c)*sinh(p)*sh(p-a)* sh(p-b)/ ∏ sinh(a) • D3_110= 1-exp(p-c)*sinh(p)*sh(p-a)* sh(p-b)/ ∏ sinh(a) • D3_111= 1+exp(p)*∏ sinh(p-a)/sinh(a) • D3_111 = ½*(cos^2(A/2)+ cos^2(B/2)+ cos^2(C/2)) + ½*√(cos(A+B+C)/2*cos(-A+B+C)/2*cos(A-B+C)/2*cos(A+B-C)/2) THEOREM2’(D.S): (i) D3_ εR 1, for ε=000 , 111. (ii) 0<D3_ ε#1, for ε≠000 , 111. (iii) D3_000+ D3_100+...+D3_110+...+D3_111=6=3!

  10. Equations for Atiyah 3pt energies

  11. 4 POINTS INSIDE CIRCLE • Four points 1,2,3,4 inside circle (|z|=R) • 4 point-triples on circle • p1 (12) (13) (14) • p2 (21) (23) (24) • p3 (31) (32) (34) • p4 (41) (42) (43) • point-triple u,v,w define cubic(polynomial) with these roots • (z-u)*(z-v)*(z-w) • 4 point-triples ---> 4 cubics • p1, p2, p3 ,p4 ---> p1, p2, p3,p4

  12. NORMALIZED DETERMINANT D4=D4_R 4-by-4 determinant of coefficient matrix ( 1 -v12-v13-v13 v12*v13+ v12*v14+ v13*v14 – v12*v13*v14) |M4| =det( 1 -v21-v23-v23 v21*v23 +v21*v24+v23*v24 – v21*v23*v24) ( 1 -v31-v32-v34 v31*v32 +v31*v34+v32*v34 – v31*v32*v34) ( 1 -v41-v42-v43 v41*v42 +v41*v43+v42*v43 – v41*v42*v43) Det(M4) D4:= -------------------------------------------------------------------------------- (v12-v21)*(v13-v31)*(v14-v41)*(v23-v32)*(v24-42)*(v34-v43) CONJECTURES : C1(Atiyah): D4 ≠0 (<--> p1, p2, p3, p4 linearly independent) C2(Atiyah-Sutcliffe): D4 R 1 C3(Atiyah-Sutcliffe): |D4|^2 R D3(1,2,3)*D3(1,2,4)*D3(1,3,4)*D3(2,3,4)

  13. Eastwood-Norbury formulas for euclidean D4 In 2001 they proved , by tricky use of MAPLE that for n=4 points in Eucl. 3-space Re(D4) = 64abca’b’c’ - 4*d3(a.a’,b.b’,c.c’) +SUM +288*VOLUME^2, where SUM: = a’[(b’+c’)^2-a^2)]*d3(a,b,c)+... D4 /64abca’b’c’ = D4 (=>eucl. Conjecture 1, and “almost”(=60/64 ) of euclidean Conjecture2

  14. New proof of the Eastwood-Norbury formula

  15. Geometric interpretation of the "nonplanar"part in Eastwood-Norbury formula

  16. Remarks on Eastwood-Norbury REMARK1: With Urbiha (2006) many cases of euclidean C1-C3 (50 pages manuscript). Euclidean Atiyah_Sutcliffe Conjecture 3 is a “huge” inequality with 4500 terms of degree 12 in six variables (distances). REMARK2: We have (D.S. 2008) a “trigonometric variant” of the Eastwood_Norbury 16*Re(D4):=(1+C3_12+C2_34)*(1+C1_24+C4_13)+ (1+C2_13+C3_24)*(1+C4_12+C1_34)+ (1+C3_12+C1_34)*(1+C2_14+C4_23)+ (1+C1_23+C3_14)*(1+C2_34+C4_12)+ (1+C2_13+C1_24)*(1+C3_14+C4_23)+ (1+C1_23+C2_14)*(1+C3_24+C4_13)+ 2*(C14_23*C13_24 - C14_23*C12_34 +C13_24*C12_34)+ 72*normalized_VOLUME^2. where Ci_jk:=cos(ij,ik) and Cij,kl:=cos(ij,kl). OPEN PROBLEMS: Hyperbolic(Euclidean) version of Eastwood-Norbury formula for n R4 (n R5) points in terms of distances, or in terms of angles.

  17. EUCLIDEAN ATIYAH-SUTCLIFFE CONJECTURES VIA POSITIVE PARAMETRIZATION OF DISTANCES FOR ANY 4 POINTS • By using our positive parametrization we obtain a proof of the strongest Atiyah- Sutcliffe conjecture C3 for arbitrary 4 points in 3-dimensional Euclidean space. It is remarkable that the “huge” 4500-term polynomial (in r12,r13,r14,r23,r24,r34) |Re(D4)|^2 - D3(1,2,3)*D3(1,2,4)*D3(1,3,4)*D3(2,3,4) as a polynomial in our variables t1,t2,t3,t4,a12,b12 has all coefficients nonnegative.

  18. Atiyah – Sutcliffe 4 point determinant

  19. Verification of four point conjecture of Svrtan – Urbiha (implying Atiyah – Sutcliffe C3)

  20. POSITIVE PARAMETRIZATIONS FOR DISTANCES BETWEEN 6 POINTS

  21. RELATIONS AND BASIC DISTANCES FOR 6 POINTS

  22. ĐOKOVIĆ’S RESULTS AND GENERALIZATIONS • In 2002 Đoković verified Atiyah’s conjecture (Conjecture 1) for almost collinear configurations and configurations with dihedral symmetry. • In 2006 (I.Urbiha ,D.S) we extended this to a variety of conjectures (with additional parameters) • proved a Đoković’s conjectural strengthening of Atiyah-Sutcliffe-Conjecture 2 for dihedral configurations and • Atiyah-Sutcliffe Conjecture 3 for 9 points on a line and one outside by extensive computer help.

  23. Remark • It turned out later that some of our generalizations are related to hyperbolic version for almost collinear configurations (with only 1 point aside a line). • Other generalizations are related to some (multi)-Schur symmetric function positivity.

  24. References • [1] Atiyah M, Sutcliffe P, The Geometry of Point Particles. arXiv: hep-th/0105179 (32 pages). Proc.R.Soc.Lond. A (2002) 458, 1089-115. • [2] Atiyah M, Sutcliffe P, Polyhedra in Physics, Chemistry and Geometry, arXiv: math-ph/03030701 (22 pages), “Milan J.Math.” 71:33-58 (2003) • [3].Eastwood M., Norbury P. A proof of Atiyah’s conjecture on configurations of four points in Euclidean three space, Geometry and Topology 5(2001) 885-893. • [4]. Svrtan D, Urbiha I, Atiyah-Sutcliffe Conjectures for almost Collinear Configurations and Some New Conjectures for Symmetric Functions, arXiv: math/0406386 (23 pages). • [5]. Svrtan D, Urbiha I,Verification and Strengthening of the Atiyah-Sutcliffe Conjectures for Several Types of Configurations, arXiv: math/0609174 (49 pages). • [6]. Atiyah M. An Unsolved Problem in Elementary Geometry , www.math.missouri.edu/archive/Miller-Lectures/atiyah/atiyah.html. • [7]. Atiyah M. An Unsolved Problem in Elementary Euclidean Geometry , http//c2.glocos.org/index.php/pedronunes/atiyah-uminho

  25. Thank you very much for your attention.

More Related