240 likes | 427 Views
MÉTODOS NUMÉRICOS Raíces de ecuaciones. Rafael Guzmán Cabrera Abril-2009 Campus Irapuato-Salamanca División de Ingenierías. Presentación. Programa de la materia. Programa…. Programa. Bibliografia. Ponderación. Tareas……………………… 20 % 2 exámenes parciales………40 % (20 % c/u)
E N D
MÉTODOS NUMÉRICOSRaíces de ecuaciones Rafael Guzmán Cabrera Abril-2009 Campus Irapuato-Salamanca División de Ingenierías.
Ponderación • Tareas……………………… 20 % • 2 exámenes parciales………40 % (20 % c/u) • 1 examen final……………. 40 %
Políticas • *Puntualidad al ingreso a clases. • *La entrega de tareas es obligatoria. Si el alumno no entrega al menos el 95% de los problemas solicitados durante el trimestre, se le descontará 1 punto de la calificación FINAL. • *No hay prórroga respecto a la entrega de tareas o a la presentación de cualquier tipo de examen.
División sintética f(x) x
Función polinomial Definición La función: se conoce como función polinomial de n–simo grado. También se hará referencia a P(x) como un polinomio de grado n Los números an, an-1, ..., a1, a0 se llaman coeficientes del polinomio y pueden ser reales o complejos.
El dominio de la función puede ser el conjunto de los números reales o el conjunto de los números complejos. Las soluciones de la ecuación las llamamos raíces de la función P. Si los coeficientes de la función son reales y la raíz también, tendríamos un cruce por el eje x de la gráfica de la función.
Raíz = cruce por el eje X f(x) x
Importancia de los Métodos Numéricos Los métodos numéricos son técnicas mediante las cuales es posible formular problemas matemáticos de tal forma que puedan resolverse usando operaciones aritméticas.
Análisis Numérico Una definición de análisis numérico podría ser el estudio de los errores en los cálculos; error aquí no quiere decir, equivocación u omisión, sino más bien una discrepancia entre el valor exacto y el calculado, que es consecuencia de la manera con que se manejan los números o fórmulas.
Los métodos numéricos pueden ser aplicados para resolver procedimientos matemáticos en: • Cálculo de derivadas • Integrales • Ecuaciones diferenciales • Operaciones con matrices • Interpolaciones • Ajuste de curvas • Polinomios • Los métodos numéricos se aplican en áreas como: • Ingeniería Industrial, Ingeniería Química, Ingeniería Civil, Ingeniería Mecánica, Ingeniería eléctrica, etc...
Teorema del Residuo:El residuo de la división del polinomio P(x) entre el binomio x - c es P(c).Es decir el residuo se obtiene sustituyendo el valor de “c” en el polinomio.
Ejemplo: Determine el residuo de la división de P(x) = x3 - 3x2 + x + 5 entre x - 2.De acuerdo con el teorema del residuo:R = P(2) = (2)3 – 3(2)2 +(2) +5 = 8 – 12 +2 +5 = 3Comprobando por división sintética:2| 1 -3 1 5 2 -2 -2 ------------------ 1 -1 -1 | 3 Residuo
Teorema del Factor:Si el residuo de la división del polinomio P(x) entre el binomio x - c es 0, entonces x – c es un factor de P(x).Se busca el residuo, empleando el teorema del residuo o la división sintética, si su valor es 0, entonces el binomio x – c es un factor de P(x).
Ejemplo: Determine si x + 1 es un factor del polinomio P(x) = 2x3 +x2 + 3x + 4Buscamos el residuo: Por el teorema del residuo:R = P(-1) = 2(-1)3 + (-1)2 +3(-1) +4 = -2 + 1 - 3 + 4 = 0 x + 1 es factor.Por división sintética:-1| 2 1 3 4 -2 1 -4 -------------------- 2 -1 4 |0 Residuo x + 1 es factor
Ejercicio: Halle una ecuación polinómica de grado 3, con coeficientes enteros, que tenga como raíces o soluciones a: -1, 3 y -2. Seleccionamos una variable que puede se la x. Se cumple que x = -1, x = 3, x = -2 son soluciones de la cuación. Planteamos entonces x + 1 = 0 , x – 3 = 0 , x + 2 = 0 y escribimos la ecuación en forma factorizada ( x + 1 ) ( x – 3 ) ( x + 2 ) = 0 resolvemos ( x2 – 2x – 3 ) ( x + 2 ) = 0 x3 + 2 x2 – 2 x2 – 4 x – 3x – 6 = 0 x3 – 7 x – 6 = 0Ecuación pedida. Si hay coeficientes fraccionarios, se multiplica toda la ecuación por el mínimo común múltiplo de los denominadores de las fracciones. Si una raíz o solución es doble se pone el factor elevado al cuadrado.
Ejercicio: Resuelva la ecuación x3– 4 x2 + x + 6 = 0 sabiendo que -1 es una raíz o solución. • Efectuamos la división sintética de P(x) = x3 – 4 x2 + x + 6 entre x + 1 • 1 | 1 - 4 1 6 Escribimos: • - 1 5 - 6 x3 – 4 x2 + x + 6 = ( x + 1 ) ( x2 – 5 x + 6 ) • 1 - 5 6 | 0 | = 0 • ( Dividendo = divisor x cociente + residuo ) • entonces x2 – 5 x + 6 = 0 y resolvemos ya • sea factorizando o por la fórmula cuadrática. • En este caso factorizamos: • ( x – 2 ) ( x - 3 ) = 0 ; x = 2 , x = 3. • Conjunto solución: S = { - 1, 2, 3 }
4 2 –6 –5 1 Ejemplo: Determine el cociente y el residuo que se obtiene al dividir : 2575 5 20 110 520 4 22 104 515 2576